BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

341 related articles for article (PubMed ID: 30833795)

  • 1. Chromosome segregation errors generate a diverse spectrum of simple and complex genomic rearrangements.
    Ly P; Brunner SF; Shoshani O; Kim DH; Lan W; Pyntikova T; Flanagan AM; Behjati S; Page DC; Campbell PJ; Cleveland DW
    Nat Genet; 2019 Apr; 51(4):705-715. PubMed ID: 30833795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chromothripsis from DNA damage in micronuclei.
    Zhang CZ; Spektor A; Cornils H; Francis JM; Jackson EK; Liu S; Meyerson M; Pellman D
    Nature; 2015 Jun; 522(7555):179-84. PubMed ID: 26017310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering the complexity of simple chromosomal insertions by genome sequencing.
    Dong Z; Chau MHK; Zhang Y; Dai P; Zhu X; Leung TY; Kong X; Kwok YK; Stankiewicz P; Cheung SW; Choy KW
    Hum Genet; 2021 Feb; 140(2):361-380. PubMed ID: 32728808
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromoanagenesis and cancer: mechanisms and consequences of localized, complex chromosomal rearrangements.
    Holland AJ; Cleveland DW
    Nat Med; 2012 Nov; 18(11):1630-8. PubMed ID: 23135524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanistic origins of diverse genome rearrangements in cancer.
    Dahiya R; Hu Q; Ly P
    Semin Cell Dev Biol; 2022 Mar; 123():100-109. PubMed ID: 33824062
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-read sequence analysis for clustered genomic copy number aberrations revealed architectures of intricately intertwined rearrangements.
    Tamura T; Yamamoto Shimojima K; Okamoto N; Yagasaki H; Morioka I; Kanno H; Minakuchi Y; Toyoda A; Yamamoto T
    Am J Med Genet A; 2023 Jan; 191(1):112-119. PubMed ID: 36282026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Breakpoint features of genomic rearrangements in neuroblastoma with unbalanced translocations and chromothripsis.
    Boeva V; Jouannet S; Daveau R; Combaret V; Pierre-Eugène C; Cazes A; Louis-Brennetot C; Schleiermacher G; Ferrand S; Pierron G; Lermine A; Rio Frio T; Raynal V; Vassal G; Barillot E; Delattre O; Janoueix-Lerosey I
    PLoS One; 2013; 8(8):e72182. PubMed ID: 23991058
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis.
    Ly P; Cleveland DW
    Trends Cell Biol; 2017 Dec; 27(12):917-930. PubMed ID: 28899600
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pipeline for complete characterization of complex germline rearrangements from long DNA reads.
    Mitsuhashi S; Ohori S; Katoh K; Frith MC; Matsumoto N
    Genome Med; 2020 Jul; 12(1):67. PubMed ID: 32731881
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs.
    Hadi K; Yao X; Behr JM; Deshpande A; Xanthopoulakis C; Tian H; Kudman S; Rosiene J; Darmofal M; DeRose J; Mortensen R; Adney EM; Shaiber A; Gajic Z; Sigouros M; Eng K; Wala JA; Wrzeszczyński KO; Arora K; Shah M; Emde AK; Felice V; Frank MO; Darnell RB; Ghandi M; Huang F; Dewhurst S; Maciejowski J; de Lange T; Setton J; Riaz N; Reis-Filho JS; Powell S; Knowles DA; Reznik E; Mishra B; Beroukhim R; Zody MC; Robine N; Oman KM; Sanchez CA; Kuhner MK; Smith LP; Galipeau PC; Paulson TG; Reid BJ; Li X; Wilkes D; Sboner A; Mosquera JM; Elemento O; Imielinski M
    Cell; 2020 Oct; 183(1):197-210.e32. PubMed ID: 33007263
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Processes shaping cancer genomes - From mitotic defects to chromosomal rearrangements.
    Keuper K; Wieland A; Räschle M; Storchova Z
    DNA Repair (Amst); 2021 Nov; 107():103207. PubMed ID: 34425515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nuclear chromosome locations dictate segregation error frequencies.
    Klaasen SJ; Truong MA; van Jaarsveld RH; Koprivec I; Štimac V; de Vries SG; Risteski P; Kodba S; Vukušić K; de Luca KL; Marques JF; Gerrits EM; Bakker B; Foijer F; Kind J; Tolić IM; Lens SMA; Kops GJPL
    Nature; 2022 Jul; 607(7919):604-609. PubMed ID: 35831506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boveri and beyond: Chromothripsis and genomic instability from mitotic errors.
    Mazzagatti A; Engel JL; Ly P
    Mol Cell; 2024 Jan; 84(1):55-69. PubMed ID: 38029753
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole genome paired-end sequencing elucidates functional and phenotypic consequences of balanced chromosomal rearrangement in patients with developmental disorders.
    Schluth-Bolard C; Diguet F; Chatron N; Rollat-Farnier PA; Bardel C; Afenjar A; Amblard F; Amiel J; Blesson S; Callier P; Capri Y; Collignon P; Cordier MP; Coubes C; Demeer B; Chaussenot A; Demurger F; Devillard F; Doco-Fenzy M; Dupont C; Dupont JM; Dupuis-Girod S; Faivre L; Gilbert-Dussardier B; Guerrot AM; Houlier M; Isidor B; Jaillard S; Joly-Hélas G; Kremer V; Lacombe D; Le Caignec C; Lebbar A; Lebrun M; Lesca G; Lespinasse J; Levy J; Malan V; Mathieu-Dramard M; Masson J; Masurel-Paulet A; Mignot C; Missirian C; Morice-Picard F; Moutton S; Nadeau G; Pebrel-Richard C; Odent S; Paquis-Flucklinger V; Pasquier L; Philip N; Plutino M; Pons L; Portnoï MF; Prieur F; Puechberty J; Putoux A; Rio M; Rooryck-Thambo C; Rossi M; Sarret C; Satre V; Siffroi JP; Till M; Touraine R; Toutain A; Toutain J; Valence S; Verloes A; Whalen S; Edery P; Tabet AC; Sanlaville D
    J Med Genet; 2019 Aug; 56(8):526-535. PubMed ID: 30923172
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scrambling the genome in cancer: causes and consequences of complex chromosome rearrangements.
    Krupina K; Goginashvili A; Cleveland DW
    Nat Rev Genet; 2024 Mar; 25(3):196-210. PubMed ID: 37938738
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A cell-based model system links chromothripsis with hyperploidy.
    Mardin BR; Drainas AP; Waszak SM; Weischenfeldt J; Isokane M; Stütz AM; Raeder B; Efthymiopoulos T; Buccitelli C; Segura-Wang M; Northcott P; Pfister SM; Lichter P; Ellenberg J; Korbel JO
    Mol Syst Biol; 2015 Sep; 11(9):828. PubMed ID: 26415501
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromothripsis as a mechanism driving complex de novo structural rearrangements in the germline.
    Kloosterman WP; Guryev V; van Roosmalen M; Duran KJ; de Bruijn E; Bakker SC; Letteboer T; van Nesselrooij B; Hochstenbach R; Poot M; Cuppen E
    Hum Mol Genet; 2011 May; 20(10):1916-24. PubMed ID: 21349919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transient multifocal genomic crisis creating chromothriptic and non-chromothriptic rearrangements in prezygotic testicular germ cells.
    Hattori A; Okamura K; Terada Y; Tanaka R; Katoh-Fukui Y; Matsubara Y; Matsubara K; Kagami M; Horikawa R; Fukami M
    BMC Med Genomics; 2019 May; 12(1):77. PubMed ID: 31138192
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing.
    Cortés-Ciriano I; Lee JJ; Xi R; Jain D; Jung YL; Yang L; Gordenin D; Klimczak LJ; Zhang CZ; Pellman DS; ; Park PJ;
    Nat Genet; 2020 Mar; 52(3):331-341. PubMed ID: 32025003
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Structural Variation: Mechanisms of Chromosome Rearrangements.
    Weckselblatt B; Rudd MK
    Trends Genet; 2015 Oct; 31(10):587-599. PubMed ID: 26209074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.