These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 30833964)

  • 1. Control of a Humanoid NAO Robot by an Adaptive Bioinspired Cerebellar Module in 3D Motion Tasks.
    Antonietti A; Martina D; Casellato C; D'Angelo E; Pedrocchi A
    Comput Intell Neurosci; 2019; 2019():4862157. PubMed ID: 30833964
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive robotic control driven by a versatile spiking cerebellar network.
    Casellato C; Antonietti A; Garrido JA; Carrillo RR; Luque NR; Ros E; Pedrocchi A; D'Angelo E
    PLoS One; 2014; 9(11):e112265. PubMed ID: 25390365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model-Driven Analysis of Eyeblink Classical Conditioning Reveals the Underlying Structure of Cerebellar Plasticity and Neuronal Activity.
    Antonietti A; Casellato C; D'Angelo E; Pedrocchi A
    IEEE Trans Neural Netw Learn Syst; 2017 Nov; 28(11):2748-2762. PubMed ID: 27608482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On Robot Compliance: A Cerebellar Control Approach.
    Abadia I; Naveros F; Garrido JA; Ros E; Luque NR
    IEEE Trans Cybern; 2021 May; 51(5):2476-2489. PubMed ID: 31647453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spiking Neural Network With Distributed Plasticity Reproduces Cerebellar Learning in Eye Blink Conditioning Paradigms.
    Antonietti A; Casellato C; Garrido JA; Luque NR; Naveros F; Ros E; D' Angelo E; Pedrocchi A
    IEEE Trans Biomed Eng; 2016 Jan; 63(1):210-9. PubMed ID: 26441441
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Realtime cerebellum: a large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit.
    Yamazaki T; Igarashi J
    Neural Netw; 2013 Nov; 47():103-11. PubMed ID: 23434303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A bi-hemispheric neuronal network model of the cerebellum with spontaneous climbing fiber firing produces asymmetrical motor learning during robot control.
    Pinzon-Morales RD; Hirata Y
    Front Neural Circuits; 2014; 8():131. PubMed ID: 25414644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A real-time spiking cerebellum model for learning robot control.
    Carrillo RR; Ros E; Boucheny C; Coenen OJ
    Biosystems; 2008; 94(1-2):18-27. PubMed ID: 18616974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multiple-Plasticity Spiking Neural Network Embedded in a Closed-Loop Control System to Model Cerebellar Pathologies.
    Geminiani A; Casellato C; Antonietti A; D'Angelo E; Pedrocchi A
    Int J Neural Syst; 2018 Jun; 28(5):1750017. PubMed ID: 28264639
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS.
    Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C
    Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise.
    Luque NR; Garrido JA; Carrillo RR; Tolu S; Ros E
    Int J Neural Syst; 2011 Oct; 21(5):385-401. PubMed ID: 21956931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive and predictive control of a simulated robot arm.
    Tolu S; Vanegas M; Garrido JA; Luque NR; Ros E
    Int J Neural Syst; 2013 Jun; 23(3):1350010. PubMed ID: 23627657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distributed cerebellar plasticity implements adaptable gain control in a manipulation task: a closed-loop robotic simulation.
    Garrido JA; Luque NR; D'Angelo E; Ros E
    Front Neural Circuits; 2013; 7():159. PubMed ID: 24130518
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cerebellar-based solution to the nondeterministic time delay problem in robotic control.
    Abadía I; Naveros F; Ros E; Carrillo RR; Luque NR
    Sci Robot; 2021 Sep; 6(58):eabf2756. PubMed ID: 34516748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multizone cerebellar chip for bioinspired adaptive robot control and sensorimotor processing.
    Wilson ED; Assaf T; Rossiter JM; Dean P; Porrill J; Anderson SR; Pearson MJ
    J R Soc Interface; 2021 Jan; 18(174):20200750. PubMed ID: 33499769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distributed cerebellar plasticity implements generalized multiple-scale memory components in real-robot sensorimotor tasks.
    Casellato C; Antonietti A; Garrido JA; Ferrigno G; D'Angelo E; Pedrocchi A
    Front Comput Neurosci; 2015; 9():24. PubMed ID: 25762922
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating Pointing Motions for a Humanoid Robot by Combining Motor Primitives.
    Tieck JCV; Schnell T; Kaiser J; Mauch F; Roennau A; Dillmann R
    Front Neurorobot; 2019; 13():77. PubMed ID: 31619981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A realistic bi-hemispheric model of the cerebellum uncovers the purpose of the abundant granule cells during motor control.
    Pinzon-Morales RD; Hirata Y
    Front Neural Circuits; 2015; 9():18. PubMed ID: 25983678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Biomimetic Control Method Increases the Adaptability of a Humanoid Robot Acting in a Dynamic Environment.
    Capolei MC; Angelidis E; Falotico E; Lund HH; Tolu S
    Front Neurorobot; 2019; 13():70. PubMed ID: 31555117
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.