These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 30834320)

  • 21. Metamaterials with custom emissivity polarization in the near-infrared.
    Bossard JA; Werner DH
    Opt Express; 2013 Feb; 21(3):3872-84. PubMed ID: 23481843
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dual-channel spontaneous emission of quantum dots in magnetic metamaterials.
    Decker M; Staude I; Shishkin II; Samusev KB; Parkinson P; Sreenivasan VK; Minovich A; Miroshnichenko AE; Zvyagin A; Jagadish C; Neshev DN; Kivshar YS
    Nat Commun; 2013; 4():2949. PubMed ID: 24335832
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Machine-learning reinforcement for optimizing multilayered thin films: applications in designing broadband antireflection coatings.
    Tran VT; Mai HV; Nguyen HM; Duong DC; Vu VH; Hoang NN; Nguyen MV; Mai TA; Tong HD; Nguyen HQ; Nguyen Q; Nguyen-Tran T
    Appl Opt; 2022 Apr; 61(12):3328-3336. PubMed ID: 35471428
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bayesian Machine Learning in Metamaterial Design: Fragile Becomes Supercompressible.
    Bessa MA; Glowacki P; Houlder M
    Adv Mater; 2019 Nov; 31(48):e1904845. PubMed ID: 31608516
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental Realization of Extreme Heat Flux Concentration with Easy-to-Make Thermal Metamaterials.
    Chen F; Lei DY
    Sci Rep; 2015 Jun; 5():11552. PubMed ID: 26109080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-field spectroscopic investigation of dual-band heavy fermion metamaterials.
    Gilbert Corder SN; Chen X; Zhang S; Hu F; Zhang J; Luan Y; Logan JA; Ciavatti T; Bechtel HA; Martin MC; Aronson M; Suzuki HS; Kimura SI; Iizuka T; Fei Z; Imura K; Sato NK; Tao TH; Liu M
    Nat Commun; 2017 Dec; 8(1):2262. PubMed ID: 29273808
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Design of wide-angle solar-selective absorbers using aperiodic metal-dielectric stacks.
    Sergeant NP; Pincon O; Agrawal M; Peumans P
    Opt Express; 2009 Dec; 17(25):22800-12. PubMed ID: 20052206
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mechanical cloak via data-driven aperiodic metamaterial design.
    Wang L; Boddapati J; Liu K; Zhu P; Daraio C; Chen W
    Proc Natl Acad Sci U S A; 2022 Mar; 119(13):e2122185119. PubMed ID: 35316137
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fabry-Perot-resonator-coupled metal pattern metamaterial for infrared suppression and radiative cooling.
    Liu D; Xu Y; Xuan Y
    Appl Opt; 2020 Aug; 59(23):6861-6867. PubMed ID: 32788776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tunable Infrared Metamaterial Emitter for Gas Sensing Application.
    Xu R; Lin YS
    Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32722016
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ferrite Film Loaded Frequency Selective Metamaterials for Sub-GHz Applications.
    Gao B; Yuen MMF; Ye T
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coherently controlling metamaterials.
    Chakrabarti S; Ramakrishna SA; Wanare H
    Opt Express; 2008 Nov; 16(24):19504-11. PubMed ID: 19030036
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined multi-band infrared camouflage and thermal management via a simple multilayer structure design.
    Wang L; Yang Y; Tang X; Li B; Hu Y; Zhu Y; Yang H
    Opt Lett; 2021 Oct; 46(20):5224-5227. PubMed ID: 34653158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications.
    Tang W; Wang L; Chen X; Liu C; Yu A; Lu W
    Nanoscale; 2016 Aug; 8(33):15196-204. PubMed ID: 27337105
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Realization of switchable EIT metamaterial by exploiting fluidity of liquid metal.
    Xu J; Fan Y; Yang R; Fu Q; Zhang F
    Opt Express; 2019 Feb; 27(3):2837-2843. PubMed ID: 30732315
    [TBL] [Abstract][Full Text] [Related]  

  • 36. True thermal antenna with hyperbolic metamaterials.
    Barbillon G; Sakat E; Hugonin JP; Biehs SA; Ben-Abdallah P
    Opt Express; 2017 Sep; 25(19):23356-23363. PubMed ID: 29041636
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Infrared absorber based on sandwiched two-dimensional black phosphorus metamaterials.
    Wang J; Jiang Y
    Opt Express; 2017 Mar; 25(5):5206-5216. PubMed ID: 28380785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Radiative metasurface for thermal camouflage, illusion and messaging.
    Song J; Huang S; Ma Y; Cheng Q; Hu R; Luo X
    Opt Express; 2020 Jan; 28(2):875-885. PubMed ID: 32121808
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mie-Metamaterials-Based Thermal Emitter for Near-Field Thermophotovoltaic Systems.
    Ghanekar A; Tian Y; Zhang S; Cui Y; Zheng Y
    Materials (Basel); 2017 Jul; 10(8):. PubMed ID: 28773241
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimization of radiative heat transfer in hyperbolic metamaterials for thermophotovoltaic applications.
    Simovski C; Maslovski S; Nefedov I; Tretyakov S
    Opt Express; 2013 Jun; 21(12):14988-5013. PubMed ID: 23787687
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.