These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30834324)

  • 1. On Biomineralization: Enzymes Switch on Mesocrystal Assembly.
    Rao A; Roncal-Herrero T; Schmid E; Drechsler M; Scheffner M; Gebauer D; Kröger R; Cölfen H
    ACS Cent Sci; 2019 Feb; 5(2):357-364. PubMed ID: 30834324
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter.
    Rao A; Cölfen H
    Chem Rec; 2018 Jul; 18(7-8):1203-1221. PubMed ID: 29573321
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesocrystals in Biominerals and Colloidal Arrays.
    Bergström L; Sturm née Rosseeva EV; Salazar-Alvarez G; Cölfen H
    Acc Chem Res; 2015 May; 48(5):1391-402. PubMed ID: 25938915
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Secrets of the Sea Urchin Spicule Revealed: Protein Cooperativity Is Responsible for ACC Transformation, Intracrystalline Incorporation, and Guided Mineral Particle Assembly in Biocomposite Material Formation.
    Pendola M; Jain G; Huang YC; Gebauer D; Evans JS
    ACS Omega; 2018 Sep; 3(9):11823-11830. PubMed ID: 30320276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the biophysical regulation of mineral growth: Standing out from the crowd.
    Rao A; Cölfen H
    J Struct Biol; 2016 Nov; 196(2):232-243. PubMed ID: 27036233
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A minimal molecular toolkit for mineral deposition? Biochemistry and proteomics of the test matrix of adult specimens of the sea urchin Paracentrotus lividus.
    Karakostis K; Zanella-Cléon I; Immel F; Guichard N; Dru P; Lepage T; Plasseraud L; Matranga V; Marin F
    J Proteomics; 2016 Mar; 136():133-44. PubMed ID: 26778142
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A correlative spatiotemporal microscale study of calcium phosphate formation and transformation within an alginate hydrogel matrix.
    Bjørnøy SH; Bassett DC; Ucar S; Strand BL; Andreassen JP; Sikorski P
    Acta Biomater; 2016 Oct; 44():254-66. PubMed ID: 27567962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.
    Mao Y; Satchell PG; Luan X; Diekwisch TG
    Ann Anat; 2016 Jan; 203():38-46. PubMed ID: 26194158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphogenesis of Metal-Organic Mesocrystals Mediated by Double Hydrophilic Block Copolymers.
    Hwang J; Heil T; Antonietti M; Schmidt BVKJ
    J Am Chem Soc; 2018 Feb; 140(8):2947-2956. PubMed ID: 29390606
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polymer-controlled crystallization of unique mineral superstructures.
    Chen SF; Zhu JH; Jiang J; Cai GB; Yu SH
    Adv Mater; 2010 Jan; 22(4):540-5. PubMed ID: 20217750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nacre biomineralisation: A review on the mechanisms of crystal nucleation.
    Nudelman F
    Semin Cell Dev Biol; 2015 Oct; 46():2-10. PubMed ID: 26205040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled formation of calcium-phosphate-based hybrid mesocrystals by organic-inorganic co-assembly.
    Zhai H; Chu X; Li L; Xu X; Tang R
    Nanoscale; 2010 Nov; 2(11):2456-62. PubMed ID: 20944837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailored order: the mesocrystalline nature of sea urchin teeth.
    Goetz AJ; Griesshaber E; Abel R; Fehr T; Ruthensteiner B; Schmahl WW
    Acta Biomater; 2014 Sep; 10(9):3885-98. PubMed ID: 24937138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization.
    Rao A; Seto J; Berg JK; Kreft SG; Scheffner M; Cölfen H
    J Struct Biol; 2013 Aug; 183(2):205-15. PubMed ID: 23796503
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-similar mesocrystals form via interface-driven nucleation and assembly.
    Zhu G; Sushko ML; Loring JS; Legg BA; Song M; Soltis JA; Huang X; Rosso KM; De Yoreo JJ
    Nature; 2021 Feb; 590(7846):416-422. PubMed ID: 33597761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biomimetically triggered inorganic crystal transformation by biomolecules: a new understanding of biomineralization.
    Jiang W; Chu X; Wang B; Pan H; Xu X; Tang R
    J Phys Chem B; 2009 Aug; 113(31):10838-44. PubMed ID: 19591436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Composite Materials Design: Biomineralization Proteins and the Guided Assembly and Organization of Biomineral Nanoparticles.
    Evans JS
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30781347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase.
    de Carvalho RT; Salgado LT; Amado Filho GM; Leal RN; Werckmann J; Rossi AL; Campos APC; Karez CS; Farina M
    J Phycol; 2017 Jun; 53(3):642-651. PubMed ID: 28258584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mineralization and non-ideality: on nature's foundry.
    Rao A; Cölfen H
    Biophys Rev; 2016 Dec; 8(4):309-329. PubMed ID: 28510024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures.
    Cölfen H; Mann S
    Angew Chem Int Ed Engl; 2003 May; 42(21):2350-65. PubMed ID: 12783497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.