These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 30834739)

  • 61. Epitaxial Core-Shell Oxide Nanoparticles: First-Principles Evidence for Increased Activity and Stability of Rutile Catalysts for Acidic Oxygen Evolution.
    Lee Y; Scheurer C; Reuter K
    ChemSusChem; 2022 May; 15(10):e202200015. PubMed ID: 35293136
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Free Electrons to Molecular Bonds and Back: Closing the Energetic Oxygen Reduction (ORR)-Oxygen Evolution (OER) Cycle Using Core-Shell Nanoelectrocatalysts.
    Strasser P
    Acc Chem Res; 2016 Nov; 49(11):2658-2668. PubMed ID: 27797179
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: the role of intentional and incidental iron incorporation.
    Trotochaud L; Young SL; Ranney JK; Boettcher SW
    J Am Chem Soc; 2014 May; 136(18):6744-53. PubMed ID: 24779732
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Oxygen Evolution Catalyzed by Nickel-Iron Oxide Nanocrystals with a Nonequilibrium Phase.
    Bau JA; Luber EJ; Buriak JM
    ACS Appl Mater Interfaces; 2015 Sep; 7(35):19755-63. PubMed ID: 26293239
    [TBL] [Abstract][Full Text] [Related]  

  • 65. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles.
    Suntivich J; May KJ; Gasteiger HA; Goodenough JB; Shao-Horn Y
    Science; 2011 Dec; 334(6061):1383-5. PubMed ID: 22033519
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Rational Manipulation of IrO
    Sun W; Zhou Z; Zaman WQ; Cao LM; Yang J
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41855-41862. PubMed ID: 29148711
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER).
    Reier T; Pawolek Z; Cherevko S; Bruns M; Jones T; Teschner D; Selve S; Bergmann A; Nong HN; Schlögl R; Mayrhofer KJ; Strasser P
    J Am Chem Soc; 2015 Oct; 137(40):13031-40. PubMed ID: 26355767
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Oxygen Vacancy-Tuned Physical Properties in Perovskite Thin Films with Multiple B-site Valance States.
    Enriquez E; Chen A; Harrell Z; Dowden P; Koskelo N; Roback J; Janoschek M; Chen C; Jia Q
    Sci Rep; 2017 Apr; 7():46184. PubMed ID: 28417954
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Correlation between Oxygen Vacancies and Oxygen Evolution Reaction Activity for a Model Electrode: PrBaCo
    Marelli E; Gazquez J; Poghosyan E; Müller E; Gawryluk DJ; Pomjakushina E; Sheptyakov D; Piamonteze C; Aegerter D; Schmidt TJ; Medarde M; Fabbri E
    Angew Chem Int Ed Engl; 2021 Jun; 60(26):14609-14619. PubMed ID: 33826206
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Facile synthesis of Ni based metal-organic frameworks wrapped MnO
    Han Y; Yu Y; Zhang L; Huang L; Zhai J; Dong S
    Talanta; 2018 Aug; 186():154-161. PubMed ID: 29784343
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Facilely Tuning Porous NiCo2 O4 Nanosheets with Metal Valence-State Alteration and Abundant Oxygen Vacancies as Robust Electrocatalysts Towards Water Splitting.
    Zhu C; Fu S; Du D; Lin Y
    Chemistry; 2016 Mar; 22(12):4000-7. PubMed ID: 26845062
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chemical Strain Engineering of Magnetism in Oxide Thin Films.
    Copie O; Varignon J; Rotella H; Steciuk G; Boullay P; Pautrat A; David A; Mercey B; Ghosez P; Prellier W
    Adv Mater; 2017 Jun; 29(22):. PubMed ID: 28370578
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Strain control of oxygen kinetics in the Ruddlesden-Popper oxide La
    Meyer TL; Jacobs R; Lee D; Jiang L; Freeland JW; Sohn C; Egami T; Morgan D; Lee HN
    Nat Commun; 2018 Jan; 9(1):92. PubMed ID: 29311690
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Enhanced Proton Conductivity in Y-Doped BaZrO
    Fluri A; Marcolongo A; Roddatis V; Wokaun A; Pergolesi D; Marzari N; Lippert T
    Adv Sci (Weinh); 2017 Dec; 4(12):1700467. PubMed ID: 29270353
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Large polarization and dielectric response in epitaxial SrZrO3 films.
    Tian H; Mao AJ; Zhao HJ; Cui Y; Li H; Kuang XY
    Phys Chem Chem Phys; 2016 Mar; 18(11):7680-7. PubMed ID: 26908044
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Impact of lattice mismatch and stoichiometry on the structure and bandgap of (Fe,Cr)2O3 epitaxial thin films.
    Kaspar TC; Chamberlin SE; Bowden ME; Colby R; Shutthanandan V; Manandhar S; Wang Y; Sushko PV; Chambers SA
    J Phys Condens Matter; 2014 Apr; 26(13):135005. PubMed ID: 24625641
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Manipulating the Ferroelectric Domain States and Structural Distortion in Epitaxial BiFeO
    Tian S; Wang C; Zhou Y; Li X; Gao P; Wang J; Feng Y; Yao X; Ge C; He M; Bai X; Yang G; Jin K
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43792-43801. PubMed ID: 30474948
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protonation-Induced Colossal Chemical Expansion and Property Tuning in NdNiO
    Chen H; Dong M; Hu Y; Lin T; Zhang Q; Guo EJ; Gu L; Wu J; Lu Q
    Nano Lett; 2022 Nov; 22(22):8983-8990. PubMed ID: 36331193
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Suppression of Structural Phase Transition in VO2 by Epitaxial Strain in Vicinity of Metal-insulator Transition.
    Yang M; Yang Y; Hong B; Wang L; Hu K; Dong Y; Xu H; Huang H; Zhao J; Chen H; Song L; Ju H; Zhu J; Bao J; Li X; Gu Y; Yang T; Gao X; Luo Z; Gao C
    Sci Rep; 2016 Mar; 6():23119. PubMed ID: 26975328
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Structural instability of epitaxial (001) BiFeO₃ thin films under tensile strain.
    Fan Z; Wang J; Sullivan MB; Huan A; Singh DJ; Ong KP
    Sci Rep; 2014 Apr; 4():4631. PubMed ID: 24717537
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.