These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 30834815)

  • 1. Augmented pseudo-likelihood estimation for two-phase studies.
    Rivera-Rodriguez C; Haneuse S; Wang M; Spiegelman D
    Stat Methods Med Res; 2020 Feb; 29(2):344-358. PubMed ID: 30834815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the analysis of two-phase designs in cluster-correlated data settings.
    Rivera-Rodriguez C; Spiegelman D; Haneuse S
    Stat Med; 2019 Oct; 38(23):4611-4624. PubMed ID: 31359448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A readily available improvement over method of moments for intra-cluster correlation estimation in the context of cluster randomized trials and fitting a GEE-type marginal model for binary outcomes.
    Westgate PM
    Clin Trials; 2019 Feb; 16(1):41-51. PubMed ID: 30295512
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis of counts with two latent classes, with application to risk assessment based on physician-visit records of cancer survivors.
    Wang H; Hu XJ; McBride ML; Spinelli JJ
    Biostatistics; 2014 Apr; 15(2):384-97. PubMed ID: 24297607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Best linear inverse probability weighted estimation for two-phase designs and missing covariate regression.
    Wang CY; Dai J
    Stat Med; 2019 Jul; 38(15):2783-2796. PubMed ID: 30908669
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of case-cohort designs with binary outcomes: Improving efficiency using whole-cohort auxiliary information.
    Noma H; Tanaka S
    Stat Methods Med Res; 2017 Apr; 26(2):691-706. PubMed ID: 25348675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Model misspecification and robust analysis for outcome-dependent sampling designs under generalized linear models.
    Maronge JM; Schildcrout JS; Rathouz PJ
    Stat Med; 2023 Apr; 42(9):1338-1352. PubMed ID: 36757145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pseudo-likelihood methods for longitudinal binary data with non-ignorable missing responses and covariates.
    Parzen M; Lipsitz SR; Fitzmaurice GM; Ibrahim JG; Troxel A
    Stat Med; 2006 Aug; 25(16):2784-96. PubMed ID: 16345018
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pseudo-likelihood method for estimating misclassification probabilities in competing-risks settings when true-event data are partially observed.
    Mpofu PB; Bakoyannis G; Yiannoutsos CT; Mwangi AW; Mburu M
    Biom J; 2020 Nov; 62(7):1747-1768. PubMed ID: 32520411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust risk prediction with biomarkers under two-phase stratified cohort design.
    Payne R; Yang M; Zheng Y; Jensen MK; Cai T
    Biometrics; 2016 Dec; 72(4):1037-1045. PubMed ID: 27037494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Constrained Maximum Likelihood Estimation for Model Calibration Using Summary-level Information from External Big Data Sources.
    Chatterjee N; Chen YH; Maas P; Carroll RJ
    J Am Stat Assoc; 2016 Mar; 111(513):107-117. PubMed ID: 27570323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-wave two-phase outcome-dependent sampling designs, with applications to longitudinal binary data.
    Tao R; Mercaldo ND; Haneuse S; Maronge JM; Rathouz PJ; Heagerty PJ; Schildcrout JS
    Stat Med; 2021 Apr; 40(8):1863-1876. PubMed ID: 33442883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empirical likelihood inference in randomized clinical trials.
    Zhang B
    Stat Methods Med Res; 2018 Dec; 27(12):3770-3784. PubMed ID: 28679341
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation and inference for semi-competing risks based on data from a nested case-control study.
    Jazić I; Lee S; Haneuse S
    Stat Methods Med Res; 2020 Nov; 29(11):3326-3339. PubMed ID: 32552435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal sampling allocation for outcome-dependent designs in cluster-correlated data settings.
    Rivera-Rodriguez C; Haneuse S; Sauer S
    Stat Methods Med Res; 2022 Dec; 31(12):2400-2414. PubMed ID: 36039539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Empirical Likelihood in Nonignorable Covariate-Missing Data Problems.
    Xie Y; Zhang B
    Int J Biostat; 2017 Apr; 13(1):. PubMed ID: 28441139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of two-phase sampling data with semiparametric additive hazards models.
    Sun Y; Qian X; Shou Q; Gilbert PB
    Lifetime Data Anal; 2017 Jul; 23(3):377-399. PubMed ID: 26995733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-phase stratified sampling and analysis for predicting binary outcomes.
    Cao Y; Haneuse S; Zheng Y; Chen J
    Biostatistics; 2023 Jul; 24(3):585-602. PubMed ID: 34923588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occupancy modeling species-environment relationships with non-ignorable survey designs.
    Irvine KM; Rodhouse TJ; Wright WJ; Olsen AR
    Ecol Appl; 2018 Sep; 28(6):1616-1625. PubMed ID: 29802750
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies for monitoring and evaluation of resource-limited national antiretroviral therapy programs: the two-phase design.
    Haneuse S; Hedt-Gauthier B; Chimbwandira F; Makombe S; Tenthani L; Jahn A
    BMC Med Res Methodol; 2015 Apr; 15():31. PubMed ID: 25886976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.