BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 30835102)

  • 1. Combining Ultrahigh-Resolution Ion-Mobility Spectrometry with Cryogenic Infrared Spectroscopy for the Analysis of Glycan Mixtures.
    Ben Faleh A; Warnke S; Rizzo TR
    Anal Chem; 2019 Apr; 91(7):4876-4882. PubMed ID: 30835102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using SLIM-Based IMS-IMS Together with Cryogenic Infrared Spectroscopy for Glycan Analysis.
    Bansal P; Yatsyna V; AbiKhodr AH; Warnke S; Ben Faleh A; Yalovenko N; Wysocki VH; Rizzo TR
    Anal Chem; 2020 Jul; 92(13):9079-9085. PubMed ID: 32456419
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A New Strategy Coupling Ion-Mobility-Selective CID and Cryogenic IR Spectroscopy to Identify Glycan Anomers.
    Pellegrinelli RP; Yue L; Carrascosa E; Ben Faleh A; Warnke S; Bansal P; Rizzo TR
    J Am Soc Mass Spectrom; 2022 May; 33(5):859-864. PubMed ID: 35437995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining ultra-high resolution ion mobility spectrometry with cryogenic IR spectroscopy for the study of biomolecular ions.
    Warnke S; Ben Faleh A; Pellegrinelli RP; Yalovenko N; Rizzo TR
    Faraday Discuss; 2019 Jul; 217(0):114-125. PubMed ID: 30993271
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of
    Bansal P; Ben Faleh A; Warnke S; Rizzo TR
    Analyst; 2022 Feb; 147(4):704-711. PubMed ID: 35079754
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separation and Identification of Glycan Anomers Using Ultrahigh-Resolution Ion-Mobility Spectrometry and Cryogenic Ion Spectroscopy.
    Warnke S; Ben Faleh A; Scutelnic V; Rizzo TR
    J Am Soc Mass Spectrom; 2019 Nov; 30(11):2204-2211. PubMed ID: 31520337
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Toward High-Throughput Cryogenic IR Fingerprinting of Mobility-Separated Glycan Isomers.
    Warnke S; Ben Faleh A; Rizzo TR
    ACS Meas Sci Au; 2021 Dec; 1(3):157-164. PubMed ID: 34939078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Ion Mobility and Cryogenic Spectroscopy for Structural and Analytical Studies of Biomolecular Ions.
    Kamrath MZ; Rizzo TR
    Acc Chem Res; 2018 Jun; 51(6):1487-1495. PubMed ID: 29746100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identifying Mixtures of Isomeric Human Milk Oligosaccharides by the Decomposition of IR Spectral Fingerprints.
    Abikhodr AH; Yatsyna V; Ben Faleh A; Warnke S; Rizzo TR
    Anal Chem; 2021 Nov; 93(44):14730-14736. PubMed ID: 34704745
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing glycans cleaved from a biotherapeutic protein using ultrahigh-resolution ion mobility spectrometry together with cryogenic ion spectroscopy.
    Yalovenko N; Yatsyna V; Bansal P; AbiKhodr AH; Rizzo TR
    Analyst; 2020 Oct; 145(20):6493-6499. PubMed ID: 32749397
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multistage Ion Mobility Spectrometry Combined with Infrared Spectroscopy for Glycan Analysis.
    Bansal P; Ben Faleh A; Warnke S; Rizzo TR
    J Am Soc Mass Spectrom; 2023 Apr; 34(4):695-700. PubMed ID: 36881006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Hadamard Transform Multiplexed IR Spectroscopy Together with a Segmented Ion Trap for the Identification of Mobility-Selected Isomers.
    Yatsyna V; Abikhodr AH; Ben Faleh A; Warnke S; Rizzo TR
    Anal Chem; 2023 Jun; 95(25):9623-9629. PubMed ID: 37307499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Cryogenic Infrared Spectroscopy with Selective Enzymatic Cleavage for Determining Glycan Primary Structure.
    Dyukova I; Carrascosa E; Pellegrinelli RP; Rizzo TR
    Anal Chem; 2020 Jan; 92(2):1658-1662. PubMed ID: 31898462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycan analysis by ion mobility-mass spectrometry and gas-phase spectroscopy.
    Manz C; Pagel K
    Curr Opin Chem Biol; 2018 Feb; 42():16-24. PubMed ID: 29107930
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of human milk oligosaccharide positional isomers by combining IMS-CID-IMS and cryogenic IR spectroscopy.
    Abikhodr AH; Ben Faleh A; Warnke S; Yatsyna V; Rizzo TR
    Analyst; 2023 May; 148(10):2277-2282. PubMed ID: 37098888
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utility of Ion-Mobility Spectrometry for Deducing Branching of Multiply Charged Glycans and Glycopeptides in a High-Throughput Positive ion LC-FLR-IMS-MS Workflow.
    Pallister EG; Choo MSF; Walsh I; Tai JN; Tay SJ; Yang YS; Ng SK; Rudd PM; Flitsch SL; Nguyen-Khuong T
    Anal Chem; 2020 Dec; 92(23):15323-15335. PubMed ID: 33166117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving glycan isomeric separation via metal ion incorporation for drift tube ion mobility-mass spectrometry.
    Xie C; Wu Q; Zhang S; Wang C; Gao W; Yu J; Tang K
    Talanta; 2020 May; 211():120719. PubMed ID: 32070621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of Mobility-Resolved
    Ben Faleh A; Warnke S; Bansal P; Pellegrinelli RP; Dyukova I; Rizzo TR
    Anal Chem; 2022 Jul; 94(28):10101-10108. PubMed ID: 35797429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accurate Identification of Isomeric Glycans by Trapped Ion Mobility Spectrometry-Electronic Excitation Dissociation Tandem Mass Spectrometry.
    Wei J; Tang Y; Ridgeway ME; Park MA; Costello CE; Lin C
    Anal Chem; 2020 Oct; 92(19):13211-13220. PubMed ID: 32865981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mass spectrometry hybridized with gas-phase InfraRed spectroscopy for glycan sequencing.
    Gray CJ; Compagnon I; Flitsch SL
    Curr Opin Struct Biol; 2020 Jun; 62():121-131. PubMed ID: 31981952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.