These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 30835112)

  • 1. In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening.
    Sieg J; Flachsenberg F; Rarey M
    J Chem Inf Model; 2019 Mar; 59(3):947-961. PubMed ID: 30835112
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topology-Based and Conformation-Based Decoys Database: An Unbiased Online Database for Training and Benchmarking Machine-Learning Scoring Functions.
    Zhang X; Shen C; Wang T; Kang Y; Li D; Pan P; Wang J; Wang G; Deng Y; Xu L; Cao D; Hou T; Wang Z
    J Med Chem; 2023 Jul; 66(13):9174-9183. PubMed ID: 37317043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine-learning scoring functions trained on complexes dissimilar to the test set already outperform classical counterparts on a blind benchmark.
    Li H; Lu G; Sze KH; Su X; Chan WY; Leung KS
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34169324
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Family-Specific Models Using Deep Neural Networks and Transfer Learning Improve Virtual Screening and Highlight the Need for More Data.
    Imrie F; Bradley AR; van der Schaar M; Deane CM
    J Chem Inf Model; 2018 Nov; 58(11):2319-2330. PubMed ID: 30273487
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward a benchmarking data set able to evaluate ligand- and structure-based virtual screening using public HTS data.
    Lindh M; Svensson F; Schaal W; Zhang J; Sköld C; Brandt P; Karlén A
    J Chem Inf Model; 2015 Feb; 55(2):343-53. PubMed ID: 25564966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selecting machine-learning scoring functions for structure-based virtual screening.
    Ballester PJ
    Drug Discov Today Technol; 2019 Dec; 32-33():81-87. PubMed ID: 33386098
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening.
    Tran-Nguyen VK; Jacquemard C; Rognan D
    J Chem Inf Model; 2020 Sep; 60(9):4263-4273. PubMed ID: 32282202
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A practical guide to machine-learning scoring for structure-based virtual screening.
    Tran-Nguyen VK; Junaid M; Simeon S; Ballester PJ
    Nat Protoc; 2023 Nov; 18(11):3460-3511. PubMed ID: 37845361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Structure-Based Virtual Screening with Ensemble Docking and Machine Learning.
    Ricci-Lopez J; Aguila SA; Gilson MK; Brizuela CA
    J Chem Inf Model; 2021 Nov; 61(11):5362-5376. PubMed ID: 34652141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beware of the generic machine learning-based scoring functions in structure-based virtual screening.
    Shen C; Hu Y; Wang Z; Zhang X; Pang J; Wang G; Zhong H; Xu L; Cao D; Hou T
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32484221
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent progress on the prospective application of machine learning to structure-based virtual screening.
    Ghislat G; Rahman T; Ballester PJ
    Curr Opin Chem Biol; 2021 Dec; 65():28-34. PubMed ID: 34052776
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Small Step Toward Generalizability: Training a Machine Learning Scoring Function for Structure-Based Virtual Screening.
    Scantlebury J; Vost L; Carbery A; Hadfield TE; Turnbull OM; Brown N; Chenthamarakshan V; Das P; Grosjean H; von Delft F; Deane CM
    J Chem Inf Model; 2023 May; 63(10):2960-2974. PubMed ID: 37166179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Beware of machine learning-based scoring functions-on the danger of developing black boxes.
    Gabel J; Desaphy J; Rognan D
    J Chem Inf Model; 2014 Oct; 54(10):2807-15. PubMed ID: 25207678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Machine learning optimization of cross docking accuracy.
    Bjerrum EJ
    Comput Biol Chem; 2016 Jun; 62():133-44. PubMed ID: 27179709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined drug discovery strategy based on machine learning and molecular docking.
    Zhang Y; Wang Y; Zhou W; Fan Y; Zhao J; Zhu L; Lu S; Lu T; Chen Y; Liu H
    Chem Biol Drug Des; 2019 May; 93(5):685-699. PubMed ID: 30688405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep reinforcement learning enables better bias control in benchmark for virtual screening.
    Shen T; Li S; Wang XS; Wang D; Wu S; Xia J; Zhang L
    Comput Biol Med; 2024 Mar; 171():108165. PubMed ID: 38402838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of New Methods Needs Proper Evaluation-Benchmarking Sets for Machine Learning Experiments for Class A GPCRs.
    Leśniak D; Podlewska S; Jastrzębski S; Sieradzki I; Bojarski AJ; Tabor J
    J Chem Inf Model; 2019 Dec; 59(12):4974-4992. PubMed ID: 31604014
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Convolutional neural network scoring and minimization in the D3R 2017 community challenge.
    Sunseri J; King JE; Francoeur PG; Koes DR
    J Comput Aided Mol Des; 2019 Jan; 33(1):19-34. PubMed ID: 29992528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening.
    Ericksen SS; Wu H; Zhang H; Michael LA; Newton MA; Hoffmann FM; Wildman SA
    J Chem Inf Model; 2017 Jul; 57(7):1579-1590. PubMed ID: 28654262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.