These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 30835207)

  • 21. Convolutional Networks Outperform Linear Decoders in Predicting EMG From Spinal Cord Signals.
    Guo Y; Gok S; Sahin M
    Front Neurosci; 2018; 12():689. PubMed ID: 30386200
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Novel Event-Driven Spiking Convolutional Neural Network for Electromyography Pattern Recognition.
    Xu M; Chen X; Sun A; Zhang X; Chen X
    IEEE Trans Biomed Eng; 2023 Sep; 70(9):2604-2615. PubMed ID: 37030849
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The influence of non-stationarity of spike signals on decoding performance in intracortical brain-computer interface: a simulation study.
    Wan Z; Liu T; Ran X; Liu P; Chen W; Zhang S
    Front Comput Neurosci; 2023; 17():1135783. PubMed ID: 37251598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Subject-Transfer Framework Based on Single-Trial EMG Analysis Using Convolutional Neural Networks.
    Kim KT; Guan C; Lee SW
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jan; 28(1):94-103. PubMed ID: 31613773
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multisession, noninvasive closed-loop neuroprosthetic control of grasping by upper limb amputees.
    Agashe HA; Paek AY; Contreras-Vidal JL
    Prog Brain Res; 2016; 228():107-28. PubMed ID: 27590967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. EMG-based prediction of step direction for a better control of lower limb wearable devices.
    Anselmino E; Mazzoni A; Micera S
    Comput Methods Programs Biomed; 2024 Sep; 254():108305. PubMed ID: 38936151
    [TBL] [Abstract][Full Text] [Related]  

  • 28. EMG-Based Hand Gesture Classification with Long Short-Term Memory Deep Recurrent Neural Networks.
    Jabbari M; Khushaba RN; Nazarpour K
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3302-3305. PubMed ID: 33018710
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural decoding based on probabilistic neural network.
    Yu Y; Zhang SM; Zhang HJ; Liu XC; Zhang QS; Zheng XX; Dai JH
    J Zhejiang Univ Sci B; 2010 Apr; 11(4):298-306. PubMed ID: 20349527
    [TBL] [Abstract][Full Text] [Related]  

  • 30. User intent prediction with a scaled conjugate gradient trained artificial neural network for lower limb amputees using a powered prosthesis.
    Woodward RB; Spanias JA; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6405-6408. PubMed ID: 28325033
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sensor Fusion for Myoelectric Control Based on Deep Learning With Recurrent Convolutional Neural Networks.
    Wang W; Chen B; Xia P; Hu J; Peng Y
    Artif Organs; 2018 Sep; 42(9):E272-E282. PubMed ID: 30003559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Real-time control of a prosthetic hand using human electrocorticography signals.
    Yanagisawa T; Hirata M; Saitoh Y; Goto T; Kishima H; Fukuma R; Yokoi H; Kamitani Y; Yoshimine T
    J Neurosurg; 2011 Jun; 114(6):1715-22. PubMed ID: 21314273
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deep Learning for Electromyographic Lower-Limb Motion Signal Classification Using Residual Learning.
    Sun J; Wang Y; Hou J; Li G; Sun B; Lu P
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2078-2086. PubMed ID: 38771681
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational approaches to decode grasping force and velocity level in upper-limb amputee from intraneural peripheral signals.
    Cracchiolo M; Panarese A; Valle G; Strauss I; Granata G; Iorio RD; Stieglitz T; Rossini PM; Mazzoni A; Micera S
    J Neural Eng; 2021 Apr; 18(5):. PubMed ID: 33725672
    [No Abstract]   [Full Text] [Related]  

  • 36. End-to-End Estimation of Hand- and Wrist Forces From Raw Intramuscular EMG Signals Using LSTM Networks.
    Olsson AE; Malešević N; Björkman A; Antfolk C
    Front Neurosci; 2021; 15():777329. PubMed ID: 34867175
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep Neural Network-based Handheld Diagnosis System for Autism Spectrum Disorder.
    Khullar V; Singh HP; Bala M
    Neurol India; 2021; 69(1):66-74. PubMed ID: 33642273
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Multiday Evaluation of Techniques for EMG-Based Classification of Hand Motions.
    Waris A; Niazi IK; Jamil M; Englehart K; Jensen W; Kamavuako EN
    IEEE J Biomed Health Inform; 2019 Jul; 23(4):1526-1534. PubMed ID: 30106701
    [TBL] [Abstract][Full Text] [Related]  

  • 39. EMG and ENG-envelope pattern recognition for prosthetic hand control.
    Noce E; Dellacasa Bellingegni A; Ciancio AL; Sacchetti R; Davalli A; Guglielmelli E; Zollo L
    J Neurosci Methods; 2019 Jan; 311():38-46. PubMed ID: 30316891
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Vision-aided grasp classification: design and evaluation of compact CNN for prosthetic hands.
    Sharma U; Vasamsetti S; Chander SA; Datta B
    Biomed Phys Eng Express; 2024 May; 10(4):. PubMed ID: 38697026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.