These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 30835207)

  • 41. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Deep learning for waveform identification of resting needle electromyography signals.
    Nodera H; Osaki Y; Yamazaki H; Mori A; Izumi Y; Kaji R
    Clin Neurophysiol; 2019 May; 130(5):617-623. PubMed ID: 30870796
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Towards Efficient Neural Decoder for Dexterous Finger Force Predictions.
    Fan J; Hu X
    IEEE Trans Biomed Eng; 2024 Jun; 71(6):1831-1840. PubMed ID: 38215325
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A multi-Kalman filter-based approach for decoding arm kinematics from EMG recordings.
    ElMohandes H; Eldawlatly S; Audí JMC; Ruff R; Hoffmann KP
    Biomed Eng Online; 2022 Sep; 21(1):60. PubMed ID: 36057581
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surface EMG Pattern Recognition Using Long Short-Term Memory Combined with Multilayer Perceptron.
    He Y; Fukuda O; Bu N; Okumura H; Yamaguchi N
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5636-5639. PubMed ID: 30441614
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Resolving the effect of wrist position on myoelectric pattern recognition control.
    Adewuyi AA; Hargrove LJ; Kuiken TA
    J Neuroeng Rehabil; 2017 May; 14(1):39. PubMed ID: 28472991
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Early decoding of walking tasks with minimal set of EMG channels.
    Barberi F; Iberite F; Anselmino E; Randi P; Sacchetti R; Gruppioni E; Mazzoni A; Micera S
    J Neural Eng; 2023 Apr; 20(2):. PubMed ID: 36996821
    [No Abstract]   [Full Text] [Related]  

  • 48. Decoding ECoG signal into 3D hand translation using deep learning.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    J Neural Eng; 2022 Mar; 19(2):. PubMed ID: 35287119
    [No Abstract]   [Full Text] [Related]  

  • 49. Adaptive neuron-to-EMG decoder training for FES neuroprostheses.
    Ethier C; Acuna D; Solla SA; Miller LE
    J Neural Eng; 2016 Aug; 13(4):046009. PubMed ID: 27247280
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Exploiting the Intertemporal Structure of the Upper-Limb sEMG: Comparisons between an LSTM Network and Cross-Sectional Myoelectric Pattern Recognition Methods.
    Olsson A; Malesevic N; Bjorkman A; Antfolk C
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():6611-6615. PubMed ID: 31947357
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Scoring Performance on the Y-Balance Test Using a Deep Learning Approach.
    Gil-Martín M; Johnston W; San-Segundo R; Caulfield B
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770417
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Open Database for Accurate Upper-Limb Intent Detection Using Electromyography and Reliable Extreme Learning Machines.
    Cene VH; Tosin M; Machado J; Balbinot A
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003524
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of dataset size and long-term ECoG-based BCI usage on deep learning decoders performance.
    Śliwowski M; Martin M; Souloumiac A; Blanchart P; Aksenova T
    Front Hum Neurosci; 2023; 17():1111645. PubMed ID: 37007675
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Validity and Impact of Methods for Collecting Training Data for Myoelectric Prosthetic Control Algorithms.
    Tully TN; Thomson CJ; Clark GA; George JA
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1974-1983. PubMed ID: 38739519
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Decoding of individuated finger movements using surface electromyography.
    Tenore FV; Ramos A; Fahmy A; Acharya S; Etienne-Cummings R; Thakor NV
    IEEE Trans Biomed Eng; 2009 May; 56(5):1427-34. PubMed ID: 19473933
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Review on electromyography based intention for upper limb control using pattern recognition for human-machine interaction.
    Asghar A; Jawaid Khan S; Azim F; Shakeel CS; Hussain A; Niazi IK
    Proc Inst Mech Eng H; 2022 May; 236(5):628-645. PubMed ID: 35118907
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A deep learning framework for automatic detection of arbitrarily shaped fiducial markers in intrafraction fluoroscopic images.
    Mylonas A; Keall PJ; Booth JT; Shieh CC; Eade T; Poulsen PR; Nguyen DT
    Med Phys; 2019 May; 46(5):2286-2297. PubMed ID: 30929254
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Brain decoding of the Human Connectome Project tasks in a dense individual fMRI dataset.
    Rastegarnia S; St-Laurent M; DuPre E; Pinsard B; Bellec P
    Neuroimage; 2023 Dec; 283():120395. PubMed ID: 37832707
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Real-time decision fusion for multimodal neural prosthetic devices.
    White JR; Levy T; Bishop W; Beaty JD
    PLoS One; 2010 Mar; 5(3):e9493. PubMed ID: 20209151
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.