These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
232 related articles for article (PubMed ID: 30835214)
1. RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge. Bogunovic H; Venhuizen F; Klimscha S; Apostolopoulos S; Bab-Hadiashar A; Bagci U; Beg MF; Bekalo L; Chen Q; Ciller C; Gopinath K; Gostar AK; Jeon K; Ji Z; Kang SH; Koozekanani DD; Lu D; Morley D; Parhi KK; Park HS; Rashno A; Sarunic M; Shaikh S; Sivaswamy J; Tennakoon R; Yadav S; De Zanet S; Waldstein SM; Gerendas BS; Klaver C; Sanchez CI; Schmidt-Erfurth U IEEE Trans Med Imaging; 2019 Aug; 38(8):1858-1874. PubMed ID: 30835214 [TBL] [Abstract][Full Text] [Related]
2. Deep-learning based multiclass retinal fluid segmentation and detection in optical coherence tomography images using a fully convolutional neural network. Lu D; Heisler M; Lee S; Ding GW; Navajas E; Sarunic MV; Beg MF Med Image Anal; 2019 May; 54():100-110. PubMed ID: 30856455 [TBL] [Abstract][Full Text] [Related]
3. Segmentation of Retinal Cysts From Optical Coherence Tomography Volumes Via Selective Enhancement. Gopinath K; Sivaswamy J IEEE J Biomed Health Inform; 2019 Jan; 23(1):273-282. PubMed ID: 29994501 [TBL] [Abstract][Full Text] [Related]
4. Segmentation of Intra-Retinal Cysts From Optical Coherence Tomography Images Using a Fully Convolutional Neural Network Model. Girish GN; Thakur B; Chowdhury SR; Kothari AR; Rajan J IEEE J Biomed Health Inform; 2019 Jan; 23(1):296-304. PubMed ID: 29994161 [TBL] [Abstract][Full Text] [Related]
5. Automated Layer Segmentation of Retinal Optical Coherence Tomography Images Using a Deep Feature Enhanced Structured Random Forests Classifier. Liu X; Fu T; Pan Z; Liu D; Hu W; Liu J; Zhang K IEEE J Biomed Health Inform; 2019 Jul; 23(4):1404-1416. PubMed ID: 30010602 [TBL] [Abstract][Full Text] [Related]
6. Double-branched and area-constraint fully convolutional networks for automated serous retinal detachment segmentation in SD-OCT images. Gao K; Niu S; Ji Z; Wu M; Chen Q; Xu R; Yuan S; Fan W; Chen Y; Dong J Comput Methods Programs Biomed; 2019 Jul; 176():69-80. PubMed ID: 31200913 [TBL] [Abstract][Full Text] [Related]
7. Surrogate-Assisted Retinal OCT Image Classification Based on Convolutional Neural Networks. Rong Y; Xiang D; Zhu W; Yu K; Shi F; Fan Z; Chen X IEEE J Biomed Health Inform; 2019 Jan; 23(1):253-263. PubMed ID: 29994378 [TBL] [Abstract][Full Text] [Related]
8. Fully automated detection of retinal disorders by image-based deep learning. Li F; Chen H; Liu Z; Zhang X; Wu Z Graefes Arch Clin Exp Ophthalmol; 2019 Mar; 257(3):495-505. PubMed ID: 30610422 [TBL] [Abstract][Full Text] [Related]
9. Deep learning based retinal OCT segmentation. Pekala M; Joshi N; Liu TYA; Bressler NM; DeBuc DC; Burlina P Comput Biol Med; 2019 Nov; 114():103445. PubMed ID: 31561100 [TBL] [Abstract][Full Text] [Related]
10. Multiscale dual attention mechanism for fluid segmentation of optical coherence tomography images. Chen M; Ma W; Shi L; Li M; Wang C; Zheng G Appl Opt; 2021 Aug; 60(23):6761-6768. PubMed ID: 34613154 [TBL] [Abstract][Full Text] [Related]
11. Intra-retinal layer segmentation in optical coherence tomography images. Mishra A; Wong A; Bizheva K; Clausi DA Opt Express; 2009 Dec; 17(26):23719-28. PubMed ID: 20052083 [TBL] [Abstract][Full Text] [Related]
12. A Review of Machine Learning Algorithms for Retinal Cyst Segmentation on Optical Coherence Tomography. Wei X; Sui R Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991857 [TBL] [Abstract][Full Text] [Related]
13. The Edge Detectors Suitable for Retinal OCT Image Segmentation. Luo S; Yang J; Gao Q; Zhou S; Zhan CA J Healthc Eng; 2017; 2017():3978410. PubMed ID: 29065594 [TBL] [Abstract][Full Text] [Related]
14. A supervised joint multi-layer segmentation framework for retinal optical coherence tomography images using conditional random field. Chakravarty A; Sivaswamy J Comput Methods Programs Biomed; 2018 Oct; 165():235-250. PubMed ID: 30337078 [TBL] [Abstract][Full Text] [Related]
15. Deep learning based joint segmentation and characterization of multi-class retinal fluid lesions on OCT scans for clinical use in anti-VEGF therapy. Hassan B; Qin S; Ahmed R; Hassan T; Taguri AH; Hashmi S; Werghi N Comput Biol Med; 2021 Sep; 136():104727. PubMed ID: 34385089 [TBL] [Abstract][Full Text] [Related]
17. Automatic Retinal Layer Segmentation of OCT Images With Central Serous Retinopathy. Xiang D; Chen G; Shi F; Zhu W; Liu Q; Yuan S; Chen X IEEE J Biomed Health Inform; 2019 Jan; 23(1):283-295. PubMed ID: 29994379 [TBL] [Abstract][Full Text] [Related]
18. RetiFluidNet: A Self-Adaptive and Multi-Attention Deep Convolutional Network for Retinal OCT Fluid Segmentation. Rasti R; Biglari A; Rezapourian M; Yang Z; Farsiu S IEEE Trans Med Imaging; 2023 May; 42(5):1413-1423. PubMed ID: 37015695 [TBL] [Abstract][Full Text] [Related]
19. Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification. Fang L; Wang C; Li S; Rabbani H; Chen X; Liu Z IEEE Trans Med Imaging; 2019 Aug; 38(8):1959-1970. PubMed ID: 30763240 [TBL] [Abstract][Full Text] [Related]
20. A benchmark study of automated intra-retinal cyst segmentation algorithms using optical coherence tomography B-scans. Girish GN; Anima VA; Kothari AR; Sudeep PV; Roychowdhury S; Rajan J Comput Methods Programs Biomed; 2018 Jan; 153():105-114. PubMed ID: 29157443 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]