These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 30835236)

  • 1. VOR Adaptation on a Humanoid iCub Robot Using a Spiking Cerebellar Model.
    Naveros F; Luque NR; Ros E; Arleo A
    IEEE Trans Cybern; 2019 Feb; ():. PubMed ID: 30835236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical coupling regulated by GABAergic nucleo-olivary afferent fibres facilitates cerebellar sensory-motor adaptation.
    Luque NR; Naveros F; Abadía I; Ros E; Arleo A
    Neural Netw; 2022 Nov; 155():422-438. PubMed ID: 36116334
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive robotic control driven by a versatile spiking cerebellar network.
    Casellato C; Antonietti A; Garrido JA; Carrillo RR; Luque NR; Ros E; Pedrocchi A; D'Angelo E
    PLoS One; 2014; 9(11):e112265. PubMed ID: 25390365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On Robot Compliance: A Cerebellar Control Approach.
    Abadia I; Naveros F; Garrido JA; Ros E; Luque NR
    IEEE Trans Cybern; 2021 May; 51(5):2476-2489. PubMed ID: 31647453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of androgenic pathway impairs encoding of cerebellar-dependent motor learning in male rats.
    Panichi R; Dieni CV; Sullivan JA; Biscarini A; Contemori S; Faralli M; Pettorossi VE
    J Comp Neurol; 2022 Aug; 530(11):2014-2032. PubMed ID: 35312040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Control of a Humanoid NAO Robot by an Adaptive Bioinspired Cerebellar Module in 3D Motion Tasks.
    Antonietti A; Martina D; Casellato C; D'Angelo E; Pedrocchi A
    Comput Intell Neurosci; 2019; 2019():4862157. PubMed ID: 30833964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A cerebellar-based solution to the nondeterministic time delay problem in robotic control.
    Abadía I; Naveros F; Ros E; Carrillo RR; Luque NR
    Sci Robot; 2021 Sep; 6(58):eabf2756. PubMed ID: 34516748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Cerebellar Spiking Neural Model for Phase Reversal of Vestibulo-ocular Reflex.
    Zhou Z; Zhai X; Tin C
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():6121-6124. PubMed ID: 30441731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Realization of Direction Selective Motor Learning in the Artificial Cerebellum: Simulation on the Vestibuloocular Reflex Adaptation
    Takatori S; Inagaki K; Hirata Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():5077-5080. PubMed ID: 30441482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A real-time spiking cerebellum model for learning robot control.
    Carrillo RR; Ros E; Boucheny C; Coenen OJ
    Biosystems; 2008; 94(1-2):18-27. PubMed ID: 18616974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Redistribution of Plasticity in a Cerebellar Spiking Neural Network Reproducing an Associative Learning Task Perturbed by TMS.
    Antonietti A; Monaco J; D'Angelo E; Pedrocchi A; Casellato C
    Int J Neural Syst; 2018 Nov; 28(9):1850020. PubMed ID: 29914314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Biomimetic Control Method Increases the Adaptability of a Humanoid Robot Acting in a Dynamic Environment.
    Capolei MC; Angelidis E; Falotico E; Lund HH; Tolu S
    Front Neurorobot; 2019; 13():70. PubMed ID: 31555117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of temperature on the normal and adapted vestibulo-ocular reflex in the goldfish.
    McElligott JG; Weiser M; Baker R
    J Neurophysiol; 1995 Oct; 74(4):1463-72. PubMed ID: 8989385
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational study on monkey VOR adaptation and smooth pursuit based on the parallel control-pathway theory.
    Tabata H; Yamamoto K; Kawato M
    J Neurophysiol; 2002 Apr; 87(4):2176-89. PubMed ID: 11929935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural basis for motor learning in the vestibuloocular reflex of primates. III. Computational and behavioral analysis of the sites of learning.
    Lisberger SG
    J Neurophysiol; 1994 Aug; 72(2):974-98. PubMed ID: 7983549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comprehensive gaze stabilization controller based on cerebellar internal models.
    Vannucci L; Falotico E; Tolu S; Cacucciolo V; Dario P; Hautop Lund H; Laschi C
    Bioinspir Biomim; 2017 Oct; 12(6):065001. PubMed ID: 28795949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebellar Roles in Frequency Competitive Motor Learning of the Vestibulo-ocular Reflex.
    Soga J; Matsuyama M; Miura H; Highstein S; Baker R; Hirata Y
    Neuroscience; 2021 May; 462():205-219. PubMed ID: 32946949
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot.
    Kreiser R; Renner A; Leite VRC; Serhan B; Bartolozzi C; Glover A; Sandamirskaya Y
    Front Neurosci; 2020; 14():551. PubMed ID: 32655350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.