These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 30835268)

  • 1. Repeated Phenotypic Evolution by Different Genetic Routes in Pseudomonas fluorescens SBW25.
    Gallie J; Bertels F; Remigi P; Ferguson GC; Nestmann S; Rainey PB
    Mol Biol Evol; 2019 May; 36(5):1071-1085. PubMed ID: 30835268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bistability in a metabolic network underpins the de novo evolution of colony switching in Pseudomonas fluorescens.
    Gallie J; Libby E; Bertels F; Remigi P; Jendresen CB; Ferguson GC; Desprat N; Buffing MF; Sauer U; Beaumont HJ; Martinussen J; Kilstrup M; Rainey PB
    PLoS Biol; 2015 Mar; 13(3):e1002109. PubMed ID: 25763575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ribosome Provisioning Activates a Bistable Switch Coupled to Fast Exit from Stationary Phase.
    Remigi P; Ferguson GC; McConnell E; De Monte S; Rogers DW; Rainey PB
    Mol Biol Evol; 2019 May; 36(5):1056-1070. PubMed ID: 30835283
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic characterization of Pseudomonas fluorescens SBW25 rsp gene expression in the phytosphere and in vitro.
    Jackson RW; Preston GM; Rainey PB
    J Bacteriol; 2005 Dec; 187(24):8477-88. PubMed ID: 16321952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Moon CD; Zhang XX; Matthijs S; Schäfer M; Budzikiewicz H; Rainey PB
    BMC Microbiol; 2008 Jan; 8():7. PubMed ID: 18194565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Forecasting of phenotypic and genetic outcomes of experimental evolution in Pseudomonas protegens.
    Pentz JT; Lind PA
    PLoS Genet; 2021 Aug; 17(8):e1009722. PubMed ID: 34351900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic basis of infectivity evolution in a bacteriophage.
    Scanlan PD; Hall AR; Lopez-Pascua LD; Buckling A
    Mol Ecol; 2011 Mar; 20(5):981-9. PubMed ID: 21073584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated bioinformatic and phenotypic analysis of RpoN-dependent traits in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
    Jones J; Studholme DJ; Knight CG; Preston GM
    Environ Microbiol; 2007 Dec; 9(12):3046-64. PubMed ID: 17991033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental evolution of bet hedging.
    Beaumont HJ; Gallie J; Kost C; Ferguson GC; Rainey PB
    Nature; 2009 Nov; 462(7269):90-3. PubMed ID: 19890329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways.
    Hall JPJ; Wright RCT; Guymer D; Harrison E; Brockhurst MA
    Microbiology (Reading); 2020 Jan; 166(1):56-62. PubMed ID: 31613206
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary flexibility in routes to mat formation by Pseudomonas.
    Mukherjee A; Dechow-Seligmann G; Gallie J
    Mol Microbiol; 2022 Feb; 117(2):394-410. PubMed ID: 34856020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction and validation of a neutrally-marked strain of Pseudomonas fluorescens SBW25.
    Zhang XX; Rainey PB
    J Microbiol Methods; 2007 Oct; 71(1):78-81. PubMed ID: 17669526
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution in Pseudomonas fluorescens.
    Champion AB; Barrett EL; Palleroni NJ; Soderberg KL; Kunisawa R; Contopoulou R; Wilson AC; Doudoroff M
    J Gen Microbiol; 1980 Oct; 120(2):485-511. PubMed ID: 6785387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental evolution reveals hidden diversity in evolutionary pathways.
    Lind PA; Farr AD; Rainey PB
    Elife; 2015 Mar; 4():. PubMed ID: 25806684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive radiation of Pseudomonas fluorescens SBW25 in experimental microcosms provides an understanding of the evolutionary ecology and molecular biology of A-L interface biofilm formation.
    Koza A; Kusmierska A; McLaughlin K; Moshynets O; Spiers AJ
    FEMS Microbiol Lett; 2017 Jul; 364(12):. PubMed ID: 28535292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Gac regulon of Pseudomonas fluorescens SBW25.
    Cheng X; de Bruijn I; van der Voort M; Loper JE; Raaijmakers JM
    Environ Microbiol Rep; 2013 Aug; 5(4):608-19. PubMed ID: 23864577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gac-mediated changes in pyrroloquinoline quinone biosynthesis enhance the antimicrobial activity of Pseudomonas fluorescens SBW25.
    Cheng X; van der Voort M; Raaijmakers JM
    Environ Microbiol Rep; 2015 Feb; 7(1):139-47. PubMed ID: 25356880
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial storage effect promotes biodiversity during adaptive radiation.
    Tan J; Rattray JB; Yang X; Jiang L
    Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28701564
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No effect of host-parasite co-evolution on host range expansion.
    Scanlan PD; Hall AR; Burlinson P; Preston G; Buckling A
    J Evol Biol; 2013 Jan; 26(1):205-9. PubMed ID: 23167752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens.
    MacLean RC; Bell G; Rainey PB
    Proc Natl Acad Sci U S A; 2004 May; 101(21):8072-7. PubMed ID: 15150419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.