These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 30835272)

  • 1. Spatial Dependency of Glenohumeral Joint Stability During Dynamic Unimanual and Bimanual Pushing and Pulling.
    McFarland DC; McCain EM; Poppo MN; Saul KR
    J Biomech Eng; 2019 May; 141(5):. PubMed ID: 30835272
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial dependency of shoulder muscle demand during dynamic unimanual and bimanual pushing and pulling.
    McFarland DC; Poppo MN; McCain EM; Saul KR
    Appl Ergon; 2018 Nov; 73():199-205. PubMed ID: 30098636
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trunk response and stability in standing under sagittal-symmetric pull-push forces at different orientations, elevations and magnitudes.
    El Ouaaid Z; Shirazi-Adl A; Plamondon A
    J Biomech; 2018 Mar; 70():166-174. PubMed ID: 29089111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Effects of Direction of Exertion, Path, and Load Placement in Nursing Cart Pushing and Pulling Tasks: An Electromyographical Study.
    Kao HC; Lin CJ; Lee YH; Chen SH
    PLoS One; 2015; 10(10):e0140792. PubMed ID: 26485039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of the glenoid labrum and glenohumeral abduction on stability of the shoulder joint through concavity-compression : an in vitro study.
    Halder AM; Kuhl SG; Zobitz ME; Larson D; An KN
    J Bone Joint Surg Am; 2001 Jul; 83(7):1062-9. PubMed ID: 11451977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Determinants and magnitudes of manual force strengths and joint moments during two-handed standing maximal horizontal pushing and pulling.
    Chow AY; Dickerson CR
    Ergonomics; 2016 Apr; 59(4):534-44. PubMed ID: 26256837
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Do accuracy requirements change bimanual and unimanual control processes similarly?
    Wang C; Boyle JB; Dai B; Shea CH
    Exp Brain Res; 2017 May; 235(5):1467-1479. PubMed ID: 28246968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of accuracy constraints on bimanual and unimanual sequence learning.
    Kennedy DM; Wang C; Wang Y; Shea CH
    Neurosci Lett; 2021 Apr; 751():135812. PubMed ID: 33705933
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hand preference on unimanual and bimanual tasks in Barbary macaques (Macaca sylvanus).
    Regaiolli B; Spiezio C; Hopkins WD
    Am J Primatol; 2018 Mar; 80(3):e22745. PubMed ID: 29457635
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical loading of the low back and shoulders during pushing and pulling activities.
    Hoozemans MJ; Kuijer PP; Kingma I; van Dieën JH; de Vries WH; van der Woude LH; Veeger DJ; van der Beek AJ; Frings-Dresen MH
    Ergonomics; 2004 Jan; 47(1):1-18. PubMed ID: 14660215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manual action verbs modulate the grip force of each hand in unimanual or symmetrical bimanual tasks.
    da Silva RL; Labrecque D; Caromano FA; Higgins J; Frak V
    PLoS One; 2018; 13(2):e0192320. PubMed ID: 29401468
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force direction and physical load in dynamic pushing and pulling.
    de Looze MP; van Greuningen K; Rebel J; Kingma I; Kuijer PP
    Ergonomics; 2000 Mar; 43(3):377-90. PubMed ID: 10755660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neural activity of supplementary and primary motor areas in monkeys and its relation to bimanual and unimanual movement sequences.
    Kazennikov O; Hyland B; Corboz M; Babalian A; Rouiller EM; Wiesendanger M
    Neuroscience; 1999 Mar; 89(3):661-74. PubMed ID: 10199603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sensorimotor interactions between pairs of fingers in bimanual and unimanual manipulative tasks.
    Ohki Y; Johansson RS
    Exp Brain Res; 1999 Jul; 127(1):43-53. PubMed ID: 10424413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial dependency of shoulder muscle demands in horizontal pushing and pulling.
    McDonald A; Picco BR; Belbeck AL; Chow AY; Dickerson CR
    Appl Ergon; 2012 Nov; 43(6):971-8. PubMed ID: 22381477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thoracohumeral muscle activity alters glenohumeral joint biomechanics during active abduction.
    Konrad GG; Jolly JT; Labriola JE; McMahon PJ; Debski RE
    J Orthop Res; 2006 Apr; 24(4):748-56. PubMed ID: 16514650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanically determined hand force limits protecting the low back during occupational pushing and pulling tasks.
    Weston EB; Aurand A; Dufour JS; Knapik GG; Marras WS
    Ergonomics; 2018 Jun; 61(6):853-865. PubMed ID: 29241415
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hand preference in unimanual and bimanual coordinated tasks in wild western lowland gorillas (Gorilla gorilla gorilla) feeding on African ginger (Zingiberaceae).
    Tamura M; Akomo-Okoue EF
    Am J Phys Anthropol; 2021 Jul; 175(3):531-545. PubMed ID: 33429467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuromuscular Fatigue in Unimanual Handgrip Does Not Completely Affect Simultaneous Bimanual Handgrip.
    Hikosaka M; Aramaki Y
    Front Hum Neurosci; 2021; 15():763580. PubMed ID: 34795569
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimanual versus unimanual coordination: what makes the difference?
    Koeneke S; Lutz K; Wüstenberg T; Jäncke L
    Neuroimage; 2004 Jul; 22(3):1336-50. PubMed ID: 15219606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.