These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
106 related articles for article (PubMed ID: 30835351)
81. Case Report: Primary ciliary dyskinesia due to CCNO mutations: a Chinese pediatric case series and literature review. Tong L; Li L; Wang W; Chen J Front Pediatr; 2024; 12():1458660. PubMed ID: 39380637 [TBL] [Abstract][Full Text] [Related]
82. Two Japanese Pediatric Patients With Primary Ciliary Dyskinesia Caused by Loss-of-Function Variants in the CCNO gene. Xu Y; Ueda K; Nishikido T; Matsumoto T; Takeuchi K Cureus; 2024 Apr; 16(4):e58854. PubMed ID: 38784318 [TBL] [Abstract][Full Text] [Related]
83. Novel mutations in Feng M; Yu X; Yue Y; Zhong J; Wang L Genes Dis; 2023 May; 10(3):743-745. PubMed ID: 37396529 [No Abstract] [Full Text] [Related]
84. Clinical and genetic spectrum of primary ciliary dyskinesia in Chinese patients: a systematic review. Peng B; Gao YH; Xie JQ; He XW; Wang CC; Xu JF; Zhang GJ Orphanet J Rare Dis; 2022 Jul; 17(1):283. PubMed ID: 35854386 [TBL] [Abstract][Full Text] [Related]
85. Early genetic analysis by next-generation sequencing improves diagnosis of primary ciliary dyskinesia. Petrarca L; De Luca A; Nenna R; Hadchouel A; Mazza T; Conti MG; Masuelli L; Midulla F; Guida V Pediatr Pulmonol; 2023 Oct; 58(10):2950-2953. PubMed ID: 37477497 [No Abstract] [Full Text] [Related]
86. Next generation massively parallel sequencing of targeted exomes to identify genetic mutations in primary ciliary dyskinesia: implications for application to clinical testing. Berg JS; Evans JP; Leigh MW; Omran H; Bizon C; Mane K; Knowles MR; Weck KE; Zariwala MA Genet Med; 2011 Mar; 13(3):218-29. PubMed ID: 21270641 [TBL] [Abstract][Full Text] [Related]
87. [Genetic diagnosis of a case with primary ciliary dyskinesia type 29 by next generation sequencing]. Shen N; Meng C; Liu Y; Gai Z Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2019 Mar; 36(3):225-228. PubMed ID: 30835351 [TBL] [Abstract][Full Text] [Related]
88. [Cilia ultrastructural and gene variation of primary ciliary dyskinesia: report of three cases and literatures review]. Wang K; Chen X; Guo CY; Liu FQ; Wang JR; Sun LF Zhonghua Er Ke Za Zhi; 2018 Feb; 56(2):134-137. PubMed ID: 29429202 [No Abstract] [Full Text] [Related]
89. Novel compound heterozygous mutations of DNAH5 identified in a pediatric patient with Kartagener syndrome: case report and literature review. Wang L; Zhao X; Liang H; Zhang L; Li C; Li D; Meng X; Meng F; Gao M BMC Pulm Med; 2021 Aug; 21(1):263. PubMed ID: 34391405 [TBL] [Abstract][Full Text] [Related]
90. [Clinical and genetic analysis of a patient with slow-channel congenital myasthenic syndrome]. Liu Y; Ye S; Zhang H; Zhang K; Lyu Y; Gao M; Gai Z; Liu Y Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2020 May; 37(5):551-554. PubMed ID: 32335884 [TBL] [Abstract][Full Text] [Related]
91. [Primary ciliary dyskinesia with HYDIN gene mutations in a child and literature review]. Chen LL; Yang YG; Wu JZ; Chen XR Zhonghua Er Ke Za Zhi; 2017 Apr; 55(4):304-307. PubMed ID: 28441829 [No Abstract] [Full Text] [Related]
92. Value of transmission electron microscopy for primary ciliary dyskinesia diagnosis in the era of molecular medicine: Genetic defects with normal and non-diagnostic ciliary ultrastructure. Shapiro AJ; Leigh MW Ultrastruct Pathol; 2017; 41(6):373-385. PubMed ID: 28915070 [TBL] [Abstract][Full Text] [Related]