BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 30835546)

  • 1. Upregulation of
    Jiang M; Chen Y; Deng L; Luo X; Wang L; Liu L
    DNA Cell Biol; 2019 May; 38(5):476-484. PubMed ID: 30835546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SPAG6 silencing induces apoptosis in the myelodysplastic syndrome cell line SKM‑1 via the PTEN/PI3K/AKT signaling pathway in vitro and in vivo.
    Yin J; Li X; Zhang Z; Luo X; Wang L; Liu L
    Int J Oncol; 2018 Jul; 53(1):297-306. PubMed ID: 29749435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SPAG6 silencing inhibits the growth of the malignant myeloid cell lines SKM-1 and K562 via activating p53 and caspase activation-dependent apoptosis.
    Yang B; Wang L; Luo X; Chen L; Yang Z; Liu L
    Int J Oncol; 2015 Feb; 46(2):649-56. PubMed ID: 25405588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SPAG6 regulates cell apoptosis through the TRAIL signal pathway in myelodysplastic syndromes.
    Li X; Yang B; Wang L; Chen L; Luo X; Liu L
    Oncol Rep; 2017 May; 37(5):2839-2846. PubMed ID: 28393201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SPAG6 promotes cell proliferation and inhibits apoptosis through the PTEN/PI3K/AKT pathway in Burkitt lymphoma.
    Zhang R; Zhu H; Yuan Y; Wang Y; Tian Z
    Oncol Rep; 2020 Nov; 44(5):2021-2030. PubMed ID: 33000212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. miR-378 inhibits cell growth and enhances apoptosis in human myelodysplastic syndromes.
    Kuang X; Wei C; Zhang T; Yang Z; Chi J; Wang L
    Int J Oncol; 2016 Nov; 49(5):1921-1930. PubMed ID: 27633496
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SPAG6 silencing induces autophagic cell death in SKM-1 cells via the AMPK/mTOR/ULK1 signaling pathway.
    Zhang M; Luo J; Luo X; Liu L
    Oncol Lett; 2020 Jul; 20(1):551-560. PubMed ID: 32537026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Upregulated SPAG6 promotes acute myeloid leukemia progression through MYO1D that regulates the EGFR family expression.
    Mu J; Yuan P; Luo J; Chen Y; Tian Y; Ding L; Zhao B; Wang X; Wang B; Liu L
    Blood Adv; 2022 Sep; 6(18):5379-5394. PubMed ID: 35667090
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Secretion and Expression of Matrix Metalloproteinase-2 and 9 from Bone Marrow Mononuclear Cells in Myelodysplastic Syndrome and Acute Myeloid Leukemia.
    Chaudhary AK; Chaudhary S; Ghosh K; Shanmukaiah C; Nadkarni AH
    Asian Pac J Cancer Prev; 2016; 17(3):1519-29. PubMed ID: 27039800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. SPARC silencing inhibits the growth of acute myeloid leukemia transformed from myelodysplastic syndrome via induction of cell cycle arrest and apoptosis.
    Nian Q; Xiao Q; Wang L; Luo J; Chen LP; Yang ZS; Liu L
    Int J Mol Med; 2014 Apr; 33(4):856-62. PubMed ID: 24535175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mesenchymal stromal cells from myelodysplastic and acute myeloid leukemia patients display in vitro reduced proliferative potential and similar capacity to support leukemia cell survival.
    Corradi G; Baldazzi C; Očadlíková D; Marconi G; Parisi S; Testoni N; Finelli C; Cavo M; Curti A; Ciciarello M
    Stem Cell Res Ther; 2018 Oct; 9(1):271. PubMed ID: 30359303
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Downregulation of microRNA‑21 expression inhibits proliferation, and induces G1 arrest and apoptosis via the PTEN/AKT pathway in SKM‑1 cells.
    Li G; Song Y; Li G; Ren J; Xie J; Zhang Y; Gao F; Mu J; Dai J
    Mol Med Rep; 2018 Sep; 18(3):2771-2779. PubMed ID: 30015844
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genomic loss of EZH2 leads to epigenetic modifications and overexpression of the HOX gene clusters in myelodysplastic syndrome.
    Xu F; Liu L; Chang CK; He Q; Wu LY; Zhang Z; Shi WH; Guo J; Zhu Y; Zhao YS; Gu SC; Fei CM; Li X
    Oncotarget; 2016 Feb; 7(7):8119-30. PubMed ID: 26812882
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ribosomal protein S14 silencing inhibits growth of acute myeloid leukemia transformed from myelodysplastic syndromes via activating p53.
    Wang L; Luo J; Nian Q; Xiao Q; Yang Z; Liu L
    Hematology; 2014 Jun; 19(4):225-31. PubMed ID: 24074450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SPAG6-silencing enhances decitabine-induced apoptosis and demethylation of PTEN in SKM-1 cells and in a xenograft mouse model.
    Luo J; Mu J; Zhang M; Zhao B; Liu L
    Leuk Lymphoma; 2021 Sep; 62(9):2242-2252. PubMed ID: 33843428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased expression of HERG K
    Lu L; Du W; Liu W; Guo D; He X; Li H
    Hematology; 2016 Dec; 21(10):583-592. PubMed ID: 27077769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long non-coding RNA HOXB-AS3 promotes myeloid cell proliferation and its higher expression is an adverse prognostic marker in patients with acute myeloid leukemia and myelodysplastic syndrome.
    Huang HH; Chen FY; Chou WC; Hou HA; Ko BS; Lin CT; Tang JL; Li CC; Yao M; Tsay W; Hsu SC; Wu SJ; Chen CY; Huang SY; Tseng MH; Tien HF; Chen RH
    BMC Cancer; 2019 Jun; 19(1):617. PubMed ID: 31234830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Expression of Human Homologue of Murine Double Minute 4 and the Short Splicing Variant, HDM4-S, in Bone Marrow in Patients With Acute Myeloid Leukemia or Myelodysplastic Syndrome.
    Han X; Medeiros LJ; Zhang YH; You MJ; Andreeff M; Konopleva M; Bueso-Ramos CE
    Clin Lymphoma Myeloma Leuk; 2016 Aug; 16 Suppl():S30-8. PubMed ID: 27155969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DICER1 gene and miRNA dysregulation in mesenchymal stem cells of patients with myelodysplastic syndrome and acute myeloblastic leukemia.
    Ozdogan H; Gur Dedeoglu B; Oztemur Islakoglu Y; Aydos A; Kose S; Atalay A; Yegin ZA; Avcu F; Uckan Cetinkaya D; Ilhan O
    Leuk Res; 2017 Dec; 63():62-71. PubMed ID: 29102598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chidamide increases the sensitivity of refractory or relapsed acute myeloid leukemia cells to anthracyclines via regulation of the HDAC3 -AKT-P21-CDK2 signaling pathway.
    Wang H; Liu YC; Zhu CY; Yan F; Wang MZ; Chen XS; Wang XK; Pang BX; Li YH; Liu DH; Gao CJ; Liu SJ; Dou LP
    J Exp Clin Cancer Res; 2020 Dec; 39(1):278. PubMed ID: 33298132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.