These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30835864)

  • 1. Effects of active and observational experience on EEG activity during early childhood.
    Bryant LJ; Cuevas K
    Psychophysiology; 2019 Jul; 56(7):e13360. PubMed ID: 30835864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous scalp recorded EEG and local field potentials from monkey ventral premotor cortex during action observation and execution reveals the contribution of mirror and motor neurons to the mu-rhythm.
    Bimbi M; Festante F; Coudé G; Vanderwert RE; Fox NA; Ferrari PF
    Neuroimage; 2018 Jul; 175():22-31. PubMed ID: 29571717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mu rhythm desynchronization is specific to action execution and observation: Evidence from time-frequency and connectivity analysis.
    Debnath R; Salo VC; Buzzell GA; Yoo KH; Fox NA
    Neuroimage; 2019 Jan; 184():496-507. PubMed ID: 30248457
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Action experience, more than observation, influences mu rhythm desynchronization.
    Cannon EN; Yoo KH; Vanderwert RE; Ferrari PF; Woodward AL; Fox NA
    PLoS One; 2014; 9(3):e92002. PubMed ID: 24663967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neural correlates of action observation and execution in 14-month-old infants: an event-related EEG desynchronization study.
    Marshall PJ; Young T; Meltzoff AN
    Dev Sci; 2011 May; 14(3):474-80. PubMed ID: 21477187
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cross-modal repetition effects in the mu rhythm indicate tactile mirroring during action observation.
    Coll MP; Bird G; Catmur C; Press C
    Cortex; 2015 Feb; 63():121-31. PubMed ID: 25282051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of the EEG power in the frequency and spatial domains during observation and execution of manual movements.
    Frenkel-Toledo S; Bentin S; Perry A; Liebermann DG; Soroker N
    Brain Res; 2013 May; 1509():43-57. PubMed ID: 23500633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Action observation and motor imagery in performance of complex movements: evidence from EEG and kinematics analysis.
    Gonzalez-Rosa JJ; Natali F; Tettamanti A; Cursi M; Velikova S; Comi G; Gatti R; Leocani L
    Behav Brain Res; 2015 Mar; 281():290-300. PubMed ID: 25532912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the EEG mu rhythm associated with observation and execution of a goal-directed action in 14-month-old preterm infants.
    Montirosso R; Piazza C; Giusti L; Provenzi L; Ferrari PF; Reni G; Borgatti R
    Sci Rep; 2019 Jun; 9(1):8975. PubMed ID: 31222153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Learning to associate novel words with motor actions: language-induced motor activity following short training.
    Fargier R; Paulignan Y; Boulenger V; Monaghan P; Reboul A; Nazir TA
    Cortex; 2012 Jul; 48(7):888-99. PubMed ID: 21864836
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conflict between gesture representations extinguishes μ rhythm desynchronization during manipulable object perception: An EEG study.
    Wamain Y; Sahaï A; Decroix J; Coello Y; Kalénine S
    Biol Psychol; 2018 Feb; 132():202-211. PubMed ID: 29292234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-term Motor Training, but Not Observational Training, Alters Neurocognitive Mechanisms of Action Processing in Infancy.
    Gerson SA; Bekkering H; Hunnius S
    J Cogn Neurosci; 2015 Jun; 27(6):1207-14. PubMed ID: 25514654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiological indicators of gesture perception.
    Cabrera ME; Novak K; Foti D; Voyles R; Wachs JP
    Exp Brain Res; 2020 Mar; 238(3):537-550. PubMed ID: 31974755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short-term physical training enhances mirror system activation to action observation.
    Brunsdon VEA; Bradford EEF; Smith L; Ferguson HJ
    Soc Neurosci; 2020 Feb; 15(1):98-107. PubMed ID: 31476956
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using mu rhythm desynchronization to measure mirror neuron activity in infants.
    Nyström P; Ljunghammar T; Rosander K; von Hofsten C
    Dev Sci; 2011 Mar; 14(2):327-35. PubMed ID: 22213903
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin color has no impact on motor resonance: evidence from mu rhythm suppression and imitation.
    Désy MC; Lepage JF
    Neurosci Res; 2013; 77(1-2):58-63. PubMed ID: 23968689
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mu rhythm, visual processing and motor control.
    Sabate M; Llanos C; Enriquez E; Rodriguez M
    Clin Neurophysiol; 2012 Mar; 123(3):550-7. PubMed ID: 21840253
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessing human mirror activity with EEG mu rhythm: A meta-analysis.
    Fox NA; Bakermans-Kranenburg MJ; Yoo KH; Bowman LC; Cannon EN; Vanderwert RE; Ferrari PF; van IJzendoorn MH
    Psychol Bull; 2016 Mar; 142(3):291-313. PubMed ID: 26689088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Observed manipulation of novel tools leads to mu rhythm suppression over sensory-motor cortices.
    Rüther NN; Brown EC; Klepp A; Bellebaum C
    Behav Brain Res; 2014 Mar; 261():328-35. PubMed ID: 24393742
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha, beta and gamma electrocorticographic rhythms in somatosensory, motor, premotor and prefrontal cortical areas differ in movement execution and observation in humans.
    Babiloni C; Del Percio C; Vecchio F; Sebastiano F; Di Gennaro G; Quarato PP; Morace R; Pavone L; Soricelli A; Noce G; Esposito V; Rossini PM; Gallese V; Mirabella G
    Clin Neurophysiol; 2016 Jan; 127(1):641-654. PubMed ID: 26038115
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.