These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 30835892)
1. Survival/Adaptation of Bone Marrow-Derived Mesenchymal Stem Cells After Long-Term Starvation Through Selective Processes. Ferro F; Spelat R; Shaw G; Duffy N; Islam MN; O'Shea PM; O'Toole D; Howard L; Murphy JM Stem Cells; 2019 Jun; 37(6):813-827. PubMed ID: 30835892 [TBL] [Abstract][Full Text] [Related]
2. Knockdown of insulin-like growth factor 1 exerts a protective effect on hypoxic injury of aged BM-MSCs: role of autophagy. Yang M; Wen T; Chen H; Deng J; Yang C; Zhang Z Stem Cell Res Ther; 2018 Oct; 9(1):284. PubMed ID: 30359321 [TBL] [Abstract][Full Text] [Related]
3. Mesenchymal stem cells/multipotent stromal cells (MSCs) are glycolytic and thus glucose is a limiting factor of in vitro models of MSC starvation. Nuschke A; Rodrigues M; Wells AW; Sylakowski K; Wells A Stem Cell Res Ther; 2016 Dec; 7(1):179. PubMed ID: 27906055 [TBL] [Abstract][Full Text] [Related]
4. Increased SCF/c-kit by hypoxia promotes autophagy of human placental chorionic plate-derived mesenchymal stem cells via regulating the phosphorylation of mTOR. Lee Y; Jung J; Cho KJ; Lee SK; Park JW; Oh IH; Kim GJ J Cell Biochem; 2013 Jan; 114(1):79-88. PubMed ID: 22833529 [TBL] [Abstract][Full Text] [Related]
6. Hypoxic culture enhances the expansion of rat bone marrow-derived mesenchymal stem cells via the regulatory pathways of cell division and apoptosis. Zhang J; Xiong L; Tang W; Tang L; Wang B In Vitro Cell Dev Biol Anim; 2018 Oct; 54(9):666-676. PubMed ID: 30136033 [TBL] [Abstract][Full Text] [Related]
7. LIGHT (TNFSF14) Increases the Survival and Proliferation of Human Bone Marrow-Derived Mesenchymal Stem Cells. Heo SK; Noh EK; Gwon GD; Kim JY; Jo JC; Choi Y; Koh S; Baek JH; Min YJ; Kim H PLoS One; 2016; 11(11):e0166589. PubMed ID: 27835685 [TBL] [Abstract][Full Text] [Related]
11. LincRNA-p21 promotes mesenchymal stem cell migration capacity and survival through hypoxic preconditioning. Meng SS; Xu XP; Chang W; Lu ZH; Huang LL; Xu JY; Liu L; Qiu HB; Yang Y; Guo FM Stem Cell Res Ther; 2018 Oct; 9(1):280. PubMed ID: 30359325 [TBL] [Abstract][Full Text] [Related]
12. Migration of culture-expanded human mesenchymal stem cells through bone marrow endothelium is regulated by matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-3. De Becker A; Van Hummelen P; Bakkus M; Vande Broek I; De Wever J; De Waele M; Van Riet I Haematologica; 2007 Apr; 92(4):440-9. PubMed ID: 17488654 [TBL] [Abstract][Full Text] [Related]
13. Gamma radiation induces senescence in human adult mesenchymal stem cells from bone marrow and periodontal ligaments. Cmielova J; Havelek R; Soukup T; Jiroutová A; Visek B; Suchánek J; Vavrova J; Mokry J; Muthna D; Bruckova L; Filip S; English D; Rezacova M Int J Radiat Biol; 2012 May; 88(5):393-404. PubMed ID: 22348537 [TBL] [Abstract][Full Text] [Related]
14. Eicosapentaenoic acid attenuates dexamethasome-induced apoptosis by inducing adaptive autophagy via GPR120 in murine bone marrow-derived mesenchymal stem cells. Gao B; Han YH; Wang L; Lin YJ; Sun Z; Lu WG; Hu YQ; Li JQ; Lin XS; Liu BH; Jie Q; Yang L; Luo ZJ Cell Death Dis; 2016 May; 7(5):e2235. PubMed ID: 27228350 [TBL] [Abstract][Full Text] [Related]
15. Characterization and use of Equine Bone Marrow Mesenchymal Stem Cells in Equine Cartilage Engineering. Study of their Hyaline Cartilage Forming Potential when Cultured under Hypoxia within a Biomaterial in the Presence of BMP-2 and TGF-ß1. Branly T; Bertoni L; Contentin R; Rakic R; Gomez-Leduc T; Desancé M; Hervieu M; Legendre F; Jacquet S; Audigié F; Denoix JM; Demoor M; Galéra P Stem Cell Rev Rep; 2017 Oct; 13(5):611-630. PubMed ID: 28597211 [TBL] [Abstract][Full Text] [Related]
16. NANOG Attenuates Hair Follicle-Derived Mesenchymal Stem Cell Senescence by Upregulating PBX1 and Activating AKT Signaling. Liu F; Shi J; Zhang Y; Lian A; Han X; Zuo K; Liu M; Zheng T; Zou F; Liu X; Jin M; Mu Y; Li G; Su G; Liu J Oxid Med Cell Longev; 2019; 2019():4286213. PubMed ID: 31885790 [TBL] [Abstract][Full Text] [Related]
17. Characterization of senescent mesenchymal stem/stromal cells derived from equine bone marrow and the effects of NANOG on the senescent phenotypes. Kushida C; Tamura N; Kasashima Y; Sato K; Arai K J Vet Med Sci; 2024 Sep; 86(9):930-937. PubMed ID: 38972751 [TBL] [Abstract][Full Text] [Related]
18. Cell cycle exit during bortezomib-induced osteogenic differentiation of mesenchymal stem cells was mediated by Xbp1s-upregulated p21 Zhang D; Fan R; Lei L; Lei L; Wang Y; Lv N; Chen P; Williamson RA; Wang B; Hu J J Cell Mol Med; 2020 Aug; 24(16):9428-9438. PubMed ID: 32628811 [TBL] [Abstract][Full Text] [Related]
19. Bone marrow- and adipose tissue-derived mesenchymal stem cells from donors with coronary artery disease; growth, yield, gene expression and the effect of oxygen concentration. Adolfsson E; Helenius G; Friberg Ö; Samano N; Frøbert O; Johansson K Scand J Clin Lab Invest; 2020 Jul; 80(4):318-326. PubMed ID: 32189529 [TBL] [Abstract][Full Text] [Related]
20. Subcellular localization of IRS-1 in IGF-I-mediated chondrogenic proliferation, differentiation and hypertrophy of bone marrow mesenchymal stem cells. Longobardi L; Granero-Moltó F; O'Rear L; Myers TJ; Li T; Kregor PJ; Spagnoli A Growth Factors; 2009 Oct; 27(5):309-20. PubMed ID: 19639489 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]