BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 30835957)

  • 1. Electrochemically Controlled Drug Release from a Conducting Polymer Hydrogel (PDMAAp/PEDOT) for Local Therapy and Bioelectronics.
    Kleber C; Lienkamp K; Rühe J; Asplund M
    Adv Healthc Mater; 2019 May; 8(10):e1801488. PubMed ID: 30835957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces.
    Kleber C; Bruns M; Lienkamp K; Rühe J; Asplund M
    Acta Biomater; 2017 Aug; 58():365-375. PubMed ID: 28578108
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A detailed insight into drug delivery from PEDOT based on analytical methods: effects and side effects.
    Boehler C; Asplund M
    J Biomed Mater Res A; 2015 Mar; 103(3):1200-7. PubMed ID: 24912825
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wafer-Scale Fabrication of Conducting Polymer Hydrogels for Microelectrodes and Flexible Bioelectronics.
    Kleber C; Lienkamp K; Rühe J; Asplund M
    Adv Biosyst; 2019 Aug; 3(8):e1900072. PubMed ID: 32648703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.
    Castagnola E; Carli S; Vomero M; Scarpellini A; Prato M; Goshi N; Fadiga L; Kassegne S; Ricci D
    Biointerphases; 2017 Jul; 12(3):031002. PubMed ID: 28704999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes.
    Goding J; Gilmour A; Martens P; Poole-Warren L; Green R
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28198591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning drug delivery from conducting polymer films for accurately controlled release of charged molecules.
    Boehler C; Oberueber F; Asplund M
    J Control Release; 2019 Jun; 304():173-180. PubMed ID: 31096016
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Conductive PPy-PEDOT:PSS Hybrid Hydrogel with Superior Biocompatibility for Bioelectronics Application.
    Ren X; Yang M; Yang T; Xu C; Ye Y; Wu X; Zheng X; Wang B; Wan Y; Luo Z
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25374-25382. PubMed ID: 34009925
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-powered therapeutic release from conducting polymer/graphene oxide films on magnesium.
    Catt K; Li H; Hoang V; Beard R; Cui XT
    Nanomedicine; 2018 Oct; 14(7):2495-2503. PubMed ID: 28571834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting polymer transistors making use of activated carbon gate electrodes.
    Tang H; Kumar P; Zhang S; Yi Z; Crescenzo GD; Santato C; Soavi F; Cicoira F
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):969-73. PubMed ID: 25510960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the performance of poly(3,4-ethylenedioxythiophene) for brain-machine interface applications.
    Mandal HS; Knaack GL; Charkhkar H; McHail DG; Kastee JS; Dumas TC; Peixoto N; Rubinson JF; Pancrazio JJ
    Acta Biomater; 2014 Jun; 10(6):2446-54. PubMed ID: 24576579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroresponsive Alginate-Based Hydrogels for Controlled Release of Hydrophobic Drugs.
    Puiggalí-Jou A; Cazorla E; Ruano G; Babeli I; Ginebra MP; García-Torres J; Alemán C
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6228-6240. PubMed ID: 33449669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogels of a conducting conjugated polymer as 3-D enzyme electrode.
    Asberg P; Inganäs O
    Biosens Bioelectron; 2003 Nov; 19(3):199-207. PubMed ID: 14611755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostimulated Release of Neutral Drugs from Polythiophene Nanoparticles: Smart Regulation of Drug-Polymer Interactions.
    Puiggalí-Jou A; Micheletti P; Estrany F; Del Valle LJ; Alemán C
    Adv Healthc Mater; 2017 Sep; 6(18):. PubMed ID: 28671328
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PEDOT:PSS hydrogels with high conductivity and biocompatibility for
    Yang T; Yang M; Xu C; Yang K; Su Y; Ye Y; Dou L; Yang Q; Ke W; Wang B; Luo Z
    J Mater Chem B; 2023 Apr; 11(14):3226-3235. PubMed ID: 36960662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Poly(3,4-ethylenedioxythiophene):GlycosAminoGlycan Aqueous Dispersions: Toward Electrically Conductive Bioactive Materials for Neural Interfaces.
    Mantione D; Del Agua I; Schaafsma W; Diez-Garcia J; Castro B; Sardon H; Mecerreyes D
    Macromol Biosci; 2016 Aug; 16(8):1227-38. PubMed ID: 27168277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex.
    Kim DH; Wiler JA; Anderson DJ; Kipke DR; Martin DC
    Acta Biomater; 2010 Jan; 6(1):57-62. PubMed ID: 19651250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
    Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT
    Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfabricated and 3-D printed electroconductive hydrogels of PEDOT:PSS and their application in bioelectronics.
    Aggas JR; Abasi S; Phipps JF; Podstawczyk DA; Guiseppi-Elie A
    Biosens Bioelectron; 2020 Nov; 168():112568. PubMed ID: 32905929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.