BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

766 related articles for article (PubMed ID: 30836094)

  • 21. Alterations in driver genes are predictive of survival in patients with resected pancreatic ductal adenocarcinoma.
    McIntyre CA; Lawrence SA; Richards AL; Chou JF; Wong W; Capanu M; Berger MF; Donoghue MTA; Yu KH; Varghese AM; Kelsen DP; Park W; Balachandran VP; Kingham TP; D'Angelica MI; Drebin JA; Jarnagin WR; Iacobuzio-Donahue CA; Allen PJ; O'Reilly EM
    Cancer; 2020 Sep; 126(17):3939-3949. PubMed ID: 32573775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Risk of Neoplastic Progression in Individuals at High Risk for Pancreatic Cancer Undergoing Long-term Surveillance.
    Canto MI; Almario JA; Schulick RD; Yeo CJ; Klein A; Blackford A; Shin EJ; Sanyal A; Yenokyan G; Lennon AM; Kamel IR; Fishman EK; Wolfgang C; Weiss M; Hruban RH; Goggins M
    Gastroenterology; 2018 Sep; 155(3):740-751.e2. PubMed ID: 29803839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Value of adding GNAS testing to pancreatic cyst fluid KRAS and carcinoembryonic antigen analysis for the diagnosis of intraductal papillary mucinous neoplasms.
    Kadayifci A; Atar M; Wang JL; Forcione DG; Casey BW; Pitman MB; Brugge WR
    Dig Endosc; 2017 Jan; 29(1):111-117. PubMed ID: 27514845
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer.
    Oshima M; Okano K; Muraki S; Haba R; Maeba T; Suzuki Y; Yachida S
    Ann Surg; 2013 Aug; 258(2):336-46. PubMed ID: 23470568
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Value of EUS in early detection of pancreatic ductal adenocarcinomas in patients with intraductal papillary mucinous neoplasms.
    Kamata K; Kitano M; Kudo M; Sakamoto H; Kadosaka K; Miyata T; Imai H; Maekawa K; Chikugo T; Kumano M; Hyodo T; Murakami T; Chiba Y; Takeyama Y
    Endoscopy; 2014 Jan; 46(1):22-9. PubMed ID: 24218310
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PIK3CA, KRAS, and BRAF mutations in intraductal papillary mucinous neoplasm/carcinoma (IPMN/C) of the pancreas.
    Schönleben F; Qiu W; Remotti HE; Hohenberger W; Su GH
    Langenbecks Arch Surg; 2008 May; 393(3):289-96. PubMed ID: 18343945
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Pancreatic mucinous noncystic (colloid) carcinomas and intraductal papillary mucinous carcinomas are usually microsatellite stable.
    Lüttges J; Beyser K; Pust S; Paulus A; Rüschoff J; Klöppel G
    Mod Pathol; 2003 Jun; 16(6):537-42. PubMed ID: 12808058
    [TBL] [Abstract][Full Text] [Related]  

  • 28. KRAS wild-type pancreatic ductal adenocarcinoma: molecular pathology and therapeutic opportunities.
    Luchini C; Paolino G; Mattiolo P; Piredda ML; Cavaliere A; Gaule M; Melisi D; Salvia R; Malleo G; Shin JI; Cargnin S; Terrazzino S; Lawlor RT; Milella M; Scarpa A
    J Exp Clin Cancer Res; 2020 Oct; 39(1):227. PubMed ID: 33115526
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Clinical significance of GNAS mutation in intraductal papillary mucinous neoplasm of the pancreas with concomitant pancreatic ductal adenocarcinoma.
    Ideno N; Ohtsuka T; Matsunaga T; Kimura H; Watanabe Y; Tamura K; Aso T; Aishima S; Miyasaka Y; Ohuchida K; Ueda J; Takahata S; Oda Y; Mizumoto K; Tanaka M
    Pancreas; 2015 Mar; 44(2):311-20. PubMed ID: 25479586
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular genetics of intraductal papillary-mucinous neoplasms of the pancreas.
    Furukawa T
    J Hepatobiliary Pancreat Surg; 2007; 14(3):233-7. PubMed ID: 17520197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High tumor mutational burden (TMB) identifies a microsatellite stable pancreatic cancer subset with prolonged survival and strong anti-tumor immunity.
    Karamitopoulou E; Andreou A; Wenning AS; Gloor B; Perren A
    Eur J Cancer; 2022 Jul; 169():64-73. PubMed ID: 35512587
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recurrent Rearrangements in PRKACA and PRKACB in Intraductal Oncocytic Papillary Neoplasms of the Pancreas and Bile Duct.
    Singhi AD; Wood LD; Parks E; Torbenson MS; Felsenstein M; Hruban RH; Nikiforova MN; Wald AI; Kaya C; Nikiforov YE; Favazza L; He J; McGrath K; Fasanella KE; Brand RE; Lennon AM; Furlan A; Dasyam AK; Zureikat AH; Zeh HJ; Lee K; Bartlett DL; Slivka A
    Gastroenterology; 2020 Feb; 158(3):573-582.e2. PubMed ID: 31678302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic alterations associated with progression from pancreatic intraepithelial neoplasia to invasive pancreatic tumor.
    Murphy SJ; Hart SN; Lima JF; Kipp BR; Klebig M; Winters JL; Szabo C; Zhang L; Eckloff BW; Petersen GM; Scherer SE; Gibbs RA; McWilliams RR; Vasmatzis G; Couch FJ
    Gastroenterology; 2013 Nov; 145(5):1098-1109.e1. PubMed ID: 23912084
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serine protease inhibitor Kazal type 1 and epidermal growth factor receptor are expressed in pancreatic tubular adenocarcinoma, intraductal papillary mucinous neoplasm, and pancreatic intraepithelial neoplasia.
    Ozaki N; Ohmuraya M; Ida S; Hashimoto D; Ikuta Y; Chikamoto A; Hirota M; Baba H
    J Hepatobiliary Pancreat Sci; 2013 Aug; 20(6):620-7. PubMed ID: 23475261
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Very low incidence of microsatellite instability in intraductal papillary-mucinous neoplasm of the pancreas.
    Nakata B; Yashiro M; Nishioka N; Aya M; Yamada S; Takenaka C; Ohira M; Ishikawa T; Nishino H; Wakasa K; Seki S; Hirakawa K
    Int J Cancer; 2002 Dec; 102(6):655-9. PubMed ID: 12448010
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Measurement of indicator genes using global complementary DNA (cDNA) amplification, by polyadenylic acid reverse transcriptase polymerase chain reaction (poly A RT-PCR): A feasibility study using paired samples from tissue and ductal juice in patients undergoing pancreatoduodenectomy.
    Sanyal S; Siriwardena AK; Byers R
    Pancreatology; 2018 Jun; 18(4):458-462. PubMed ID: 29574096
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined targeting of TGF-β, EGFR and HER2 suppresses lymphangiogenesis and metastasis in a pancreatic cancer model.
    Gore J; Imasuen-Williams IE; Conteh AM; Craven KE; Cheng M; Korc M
    Cancer Lett; 2016 Aug; 379(1):143-53. PubMed ID: 27267807
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Molecular, morphological and survival analysis of 177 resected pancreatic ductal adenocarcinomas (PDACs): Identification of prognostic subtypes.
    Schlitter AM; Segler A; Steiger K; Michalski CW; Jäger C; Konukiewitz B; Pfarr N; Endris V; Bettstetter M; Kong B; Regel I; Kleeff J; Klöppel G; Esposito I
    Sci Rep; 2017 Feb; 7():41064. PubMed ID: 28145465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comprehensive genomic profiling of different subtypes of nasopharyngeal carcinoma reveals similarities and differences to guide targeted therapy.
    Ali SM; Yao M; Yao J; Wang J; Cheng Y; Schrock AB; Chirn GW; Chen H; Mu S; Gay L; Elvin JA; Suh J; Miller VA; Stephens PJ; Ross JS; Wang K
    Cancer; 2017 Sep; 123(18):3628-3637. PubMed ID: 28581676
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor Mutational Burden in Real-World Patients With Pancreatic Cancer: Genomic Alterations and Predictive Value for Immune Checkpoint Inhibitor Effectiveness.
    Quintanilha JCF; Storandt MH; Graf RP; Li G; Keller R; Lin DI; Ross JS; Huang RSP; Schrock AB; Oxnard GR; Chakrabarti S; Mahipal A
    JCO Precis Oncol; 2023 Jul; 7():e2300092. PubMed ID: 37410975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.