BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 30836335)

  • 1. Reversible 2D networks of oligo(ε-caprolactone) at the air-water interface.
    Saretia S; Machatschek R; Schulz B; Lendlein A
    Biomed Mater; 2019 Apr; 14(3):034103. PubMed ID: 30836335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic Degradation of Oligo(ε-caprolactone)s End-Capped with Phenylboronic Acid Derivatives at the Air-Water Interface.
    Roßberg J; Rottke FO; Schulz B; Lendlein A
    Macromol Rapid Commun; 2016 Dec; 37(23):1966-1971. PubMed ID: 27762464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of biodegradable networks by photo-crosslinking lactide, epsilon-caprolactone and trimethylene carbonate-based oligomers functionalized with fumaric acid monoethyl ester.
    Grijpma DW; Hou Q; Feijen J
    Biomaterials; 2005 Jun; 26(16):2795-802. PubMed ID: 15603775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis, characterization, and degradation behavior of amphiphilic poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide]-g-poly(epsilon-caprolactone).
    Miao ZM; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2005; 6(6):3449-57. PubMed ID: 16283778
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization and in vitro degradation of a biodegradable elastomer.
    Younes HM; Bravo-Grimaldo E; Amsden BG
    Biomaterials; 2004 Oct; 25(22):5261-9. PubMed ID: 15110477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and properties of methacrylate-endcapped caprolactone networks with modulated water uptake for biomedical applications.
    Ivirico JL; Martínez EC; Sánchez MS; Criado IM; Ribelles JL; Pradas MM
    J Biomed Mater Res B Appl Biomater; 2007 Oct; 83(1):266-75. PubMed ID: 17405167
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural characterization of a lipase-catalyzed copolymerization of epsilon-caprolactone and D,L-lactide.
    Wahlberg J; Persson PV; Olsson T; Hedenström E; Iversen T
    Biomacromolecules; 2003; 4(4):1068-71. PubMed ID: 12857093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds.
    Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH
    Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) block copolymer.
    Shim WS; Kim JH; Park H; Kim K; Chan Kwon I; Lee DS
    Biomaterials; 2006 Oct; 27(30):5178-85. PubMed ID: 16797693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinforced Mechanical Properties and Tunable Biodegradability in Nanoporous Cellulose Gels: Poly(L-lactide-co-caprolactone) Nanocomposites.
    Li K; Huang J; Gao H; Zhong Y; Cao X; Chen Y; Zhang L; Cai J
    Biomacromolecules; 2016 Apr; 17(4):1506-15. PubMed ID: 26955741
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzymatic degradation of poly(L-lactide) and poly(epsilon-caprolactone) electrospun fibers.
    Zeng J; Chen X; Liang Q; Xu X; Jing X
    Macromol Biosci; 2004 Dec; 4(12):1118-25. PubMed ID: 15586389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osteoblast behaviour on in situ photopolymerizable three-dimensional scaffolds based on D, L-lactide, epsilon-caprolactone and trimethylene carbonate.
    Declercq HA; Cornelissen MJ; Gorskiy TL; Schacht EH
    J Mater Sci Mater Med; 2006 Feb; 17(2):113-22. PubMed ID: 16502243
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrolytic degradation study of biodegradable polyesteramide copolymers based on epsilon-caprolactone and 11-aminoundecanoic acid.
    Qian Z; Li S; He Y; Zhang H; Liu X
    Biomaterials; 2004 May; 25(11):1975-81. PubMed ID: 14741611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Preparation of biodegradable porous films for use as wound coverings].
    Kil'deeva NR; Vikhoreva GA; Gal'braĭkh LS; Mironov AV; Bonartseva GA; Perminov PA; Romashova AN
    Prikl Biokhim Mikrobiol; 2006; 42(6):716-20. PubMed ID: 17168303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Route to Aliphatic Poly(ester)s with Thiol Pendant Groups: From Monomer Design to Editable Porous Scaffolds.
    Fuoco T; Finne-Wistrand A; Pappalardo D
    Biomacromolecules; 2016 Apr; 17(4):1383-94. PubMed ID: 26915640
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Initiator structure influence on thermal and rheological properties of oligo(epsilon-caprolactone).
    Mikhail A; Sharifpoor S; Amsden B
    J Biomater Sci Polym Ed; 2006; 17(3):291-301. PubMed ID: 16689016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of the air-water interfacial properties of biodegradable polyesters and their block copolymers with poly(ethylene glycol).
    Park HW; Choi J; Ohn K; Lee H; Kim JW; Won YY
    Langmuir; 2012 Aug; 28(31):11555-66. PubMed ID: 22830444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipase-catalyzed ring-opening copolymerization of ε-caprolactone and β-lactam.
    Stavila E; Alberda van Ekenstein GO; Woortman AJ; Loos K
    Biomacromolecules; 2014 Jan; 15(1):234-41. PubMed ID: 24294825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cross-linking of polybutadiene at the air/water interface: toward an easy access to two-dimensional polymeric materials.
    Matmour R; Joncheray TJ; Gnanou Y; Duran RS
    J Colloid Interface Sci; 2007 Jul; 311(1):315-21. PubMed ID: 17368661
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copolymer Networks From Oligo(ε-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature.
    Saatchi M; Behl M; Nöchel U; Lendlein A
    Macromol Rapid Commun; 2015 May; 36(10):880-4. PubMed ID: 25776303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.