BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 30836335)

  • 21. Modeling of lipase catalyzed ring-opening polymerization of epsilon-caprolactone.
    Sivalingam G; Madras G
    Biomacromolecules; 2004; 5(2):603-9. PubMed ID: 15003027
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The influence of pendant hydroxyl groups on enzymatic degradation and drug delivery of amphiphilic poly[glycidol-block-(epsilon-caprolactone)] copolymers.
    Mao J; Gan Z
    Macromol Biosci; 2009 Nov; 9(11):1080-9. PubMed ID: 19634151
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Surface Mechanical and Rheological Behaviors of Biocompatible Poly((D,L-lactic acid-ran-glycolic acid)-block-ethylene glycol) (PLGA-PEG) and Poly((D,L-lactic acid-ran-glycolic acid-ran-ε-caprolactone)-block-ethylene glycol) (PLGACL-PEG) Block Copolymers at the Air-Water Interface.
    Kim HC; Lee H; Khetan J; Won YY
    Langmuir; 2015 Dec; 31(51):13821-33. PubMed ID: 26633595
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mathematically defined tissue engineering scaffold architectures prepared by stereolithography.
    Melchels FP; Bertoldi K; Gabbrielli R; Velders AH; Feijen J; Grijpma DW
    Biomaterials; 2010 Sep; 31(27):6909-16. PubMed ID: 20579724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Post-plasma grafting of AEMA as a versatile tool to biofunctionalise polyesters for tissue engineering.
    Desmet T; Billiet T; Berneel E; Cornelissen R; Schaubroeck D; Schacht E; Dubruel P
    Macromol Biosci; 2010 Dec; 10(12):1484-94. PubMed ID: 20857390
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Miscibility and hydrolytic behavior of poly(trimethylene carbonate) and poly(L-lactide) and their blends in monolayers at the air/water interface.
    Moon HK; Choi YS; Lee JK; Ha CS; Lee WK; Gardella JA
    Langmuir; 2009 Apr; 25(8):4478-83. PubMed ID: 19245220
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oligo(epsilon-caprolactone)-based polymer networks prepared by photocrosslinking in solution.
    Friess F; Wischke C; Behl M; Lendlein A
    J Appl Biomater Funct Mater; 2012; 10(3):273-9. PubMed ID: 23242870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Self-Rolled Porous Hollow Tubes Made up of Biodegradable Polymers.
    Peng L; Zhu J; Agarwal S
    Macromol Rapid Commun; 2017 May; 38(10):. PubMed ID: 28295800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surface eroding, liquid injectable polymers based on 5-ethylene ketal ε-caprolactone.
    Babasola OI; Amsden BG
    Biomacromolecules; 2011 Oct; 12(10):3423-31. PubMed ID: 21902176
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Poly(epsilon-caprolactone)/chitin and poly(epsilon-caprolactone)/chitosan blend films with compositional gradients: fabrication and their biodegradability.
    Honma T; Zhao L; Asakawa N; Inoue Y
    Macromol Biosci; 2006 Mar; 6(3):241-9. PubMed ID: 16534761
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis of an X-ray opaque biodegradable copolyester by chemical modification of poly (epsilon-caprolactone).
    Nottelet B; Coudane J; Vert M
    Biomaterials; 2006 Oct; 27(28):4948-54. PubMed ID: 16759692
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microspheres made of poly(epsilon-caprolactone)-based amphiphilic copolymers: potential in sustained delivery of proteins.
    Quaglia F; Ostacolo L; Nese G; De Rosa G; La Rotonda MI; Palumbo R; Maglio G
    Macromol Biosci; 2005 Oct; 5(10):945-54. PubMed ID: 16208680
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Supramolecular structure, phase behavior and thermo-rheological properties of a poly (L-lactide-co-ε-caprolactone) statistical copolymer.
    Ugartemendia JM; Muñoz ME; Santamaria A; Sarasua JR
    J Mech Behav Biomed Mater; 2015 Aug; 48():153-163. PubMed ID: 25933171
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic chain scission kinetics of poly(epsilon-caprolactone) monolayers.
    Kulkarni A; Reiche J; Kratz K; Kamusewitz H; Sokolov IM; Lendlein A
    Langmuir; 2007 Nov; 23(24):12202-7. PubMed ID: 17949018
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthetic Biodegradable Hydrogels with Excellent Mechanical Properties and Good Cell Adhesion Characteristics Obtained by the Combinatorial Synthesis of Photo-Cross-Linked Networks.
    Zant E; Grijpma DW
    Biomacromolecules; 2016 May; 17(5):1582-92. PubMed ID: 27077699
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Chemical-physical and preliminary biological properties of poly (2-hydroxyethylmethacrylate)/poly-(epsilon-caprolactone)/hydroxyapa- tite composite.
    Giordano C; Causa F; Silvio LD; Ambrosio L
    J Mater Sci Mater Med; 2007 Apr; 18(4):653-60. PubMed ID: 17546428
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Poly(caprolactone-co-trimethylenecarbonate) urethane acrylate resins for digital light processing of bioresorbable tissue engineering implants.
    Kuhnt T; Marroquín García R; Camarero-Espinosa S; Dias A; Ten Cate AT; van Blitterswijk CA; Moroni L; Baker MB
    Biomater Sci; 2019 Nov; 7(12):4984-4989. PubMed ID: 31667486
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Shape-memory polymer networks from oligo[(epsilon-hydroxycaproate)-co-glycolate]dimethacrylates and butyl acrylate with adjustable hydrolytic degradation rate.
    Kelch S; Steuer S; Schmidt AM; Lendlein A
    Biomacromolecules; 2007 Mar; 8(3):1018-27. PubMed ID: 17305394
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(ether-ester) conjugates with enhanced degradation.
    Hans M; Keul H; Moeller M
    Biomacromolecules; 2008 Oct; 9(10):2954-62. PubMed ID: 18803418
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Morphology and properties of organic-inorganic hybrid materials involving TiO2 and poly(epsilon-caprolactone), a biodegradable aliphatic polyester.
    Li R; Nie K; Pang W; Zhu Q
    J Biomed Mater Res A; 2007 Oct; 83(1):114-22. PubMed ID: 17385234
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.