These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30836342)

  • 1. In situ growth of MnO@Na
    Ji P; Wan J; Xi Y; Guan Y; Zhang C; Gu X; Li J; Lu J; Zhang D
    Nanotechnology; 2019 Aug; 30(33):335401. PubMed ID: 30836342
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities.
    Li M; Lei W; Yu Y; Yang W; Li J; Chen D; Xu S; Feng M; Li H
    Nanoscale; 2018 Aug; 10(34):15926-15931. PubMed ID: 30113063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible synthesis of high-performance electrode materials of N-doped carbon coating MnO nanowires for supercapacitors.
    Zhou T; Zhang W; Fu H; Fang J; Chen C; Wang Z
    Nanotechnology; 2021 Dec; 33(8):. PubMed ID: 34768241
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In-Situ Synthesis of Heterostructured Carbon-Coated Co/MnO Nanowire Arrays for High-Performance Anodes in Asymmetric Supercapacitors.
    Chen G; Zhang X; Ma Y; Song H; Pi C; Zheng Y; Gao B; Fu J; Chu PK
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32679654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors.
    Zhou X; Yue X; Dong Y; Zheng Q; Lin D; Du X; Qu G
    J Colloid Interface Sci; 2021 Oct; 599():68-78. PubMed ID: 33933798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities.
    Choi BG; Yang M; Hong WH; Choi JW; Huh YS
    ACS Nano; 2012 May; 6(5):4020-8. PubMed ID: 22524516
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Manganese oxide nanowires wrapped with nitrogen doped carbon layers for high performance supercapacitors.
    Li Y; Mei Y; Zhang LQ; Wang JH; Liu AR; Zhang YJ; Liu SQ
    J Colloid Interface Sci; 2015 Oct; 455():188-93. PubMed ID: 26070189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D Interconnected Binder-Free Electrospun MnO@C Nanofibers for Supercapacitor Devices.
    Ramadan M; Abdellah AM; Mohamed SG; Allam NK
    Sci Rep; 2018 May; 8(1):7988. PubMed ID: 29789633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Supported PANI@MnO₂ Coaxial Nanowire Network Sponge as a Binder Free Electrode for Supercapacitors.
    Yang G; Li X; Chen T; Gao W; Dai Y; Li X
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4203-4209. PubMed ID: 31968442
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MnO2/TiN heterogeneous nanostructure design for electrochemical energy storage.
    Sherrill SA; Duay J; Gui Z; Banerjee P; Rubloff GW; Lee SB
    Phys Chem Chem Phys; 2011 Sep; 13(33):15221-6. PubMed ID: 21776451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Asymmetric carbon nanotube-MnO₂ two-ply yarn supercapacitors for wearable electronics.
    Su F; Miao M
    Nanotechnology; 2014 Apr; 25(13):135401. PubMed ID: 24583526
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene decorated with MoS2 nanosheets: a synergetic energy storage composite electrode for supercapacitor applications.
    Thangappan R; Kalaiselvam S; Elayaperumal A; Jayavel R; Arivanandhan M; Karthikeyan R; Hayakawa Y
    Dalton Trans; 2016 Feb; 45(6):2637-46. PubMed ID: 26732466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Advanced MnO/N-Gr 3D Walls through Polymer Cross-Linking for High-Performance Supercapacitor.
    Tran NQ; Kang BK; Tiruneh SN; Yoon DH
    Chemistry; 2016 Jan; 22(5):1652-7. PubMed ID: 26689298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural evolution from layered Na
    Luo L; Zhen Y; Lu Y; Zhou K; Huang J; Huang Z; Mathur S; Hong Z
    Nanoscale; 2020 Jan; 12(1):230-238. PubMed ID: 31815995
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-limiting electrodeposition of hierarchical MnO₂ and M(OH)₂/MnO₂ nanofibril/nanowires: mechanism and supercapacitor properties.
    Duay J; Sherrill SA; Gui Z; Gillette E; Lee SB
    ACS Nano; 2013 Feb; 7(2):1200-14. PubMed ID: 23327566
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boosting Electrochemistry of Manganese Oxide Nanosheets by Ostwald Ripening during Reduction for Fiber Electrochemical Energy Storage Device.
    Jia D; Chen X; Tan H; Liu F; Yue L; Zheng Y; Cao X; Li C; Sun Y; Liu H; Liu J
    ACS Appl Mater Interfaces; 2018 Sep; 10(36):30388-30399. PubMed ID: 30070464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Stability MnO
    Ma Z; Jing F; Fan Y; Hou L; Su L; Fan L; Shao G
    Small; 2019 May; 15(20):e1900862. PubMed ID: 30997956
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flexible Supercapacitor Electrodes Based on Carbon Cloth-Supported LaMnO
    Ma PP; Lei N; Yu B; Liu YK; Jiang GH; Dai JM; Li SH; Lu QL
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31771280
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step synthesis of graphene nanoribbon-MnO₂ hybrids and their all-solid-state asymmetric supercapacitors.
    Liu M; Tjiu WW; Pan J; Zhang C; Gao W; Liu T
    Nanoscale; 2014 Apr; 6(8):4233-42. PubMed ID: 24608664
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ag-modified Fe
    Guan Y; Ji P; Wan J; Zhang D; Wang Z; Tian H; Hu C; Hu B; Tang Q; Xi Y
    Nanotechnology; 2020 Mar; 31(12):125405. PubMed ID: 31751972
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.