These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30836342)

  • 21. α-Ni(OH)
    Wei W; Wu J; Cui S; Zhao Y; Chen W; Mi L
    Nanoscale; 2019 Mar; 11(13):6243-6253. PubMed ID: 30882128
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrochemical formation mechanism for the controlled synthesis of heterogeneous MnO2/Poly(3,4-ethylenedioxythiophene) nanowires.
    Liu R; Duay J; Lee SB
    ACS Nano; 2011 Jul; 5(7):5608-19. PubMed ID: 21661749
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-performance asymmetric supercapacitors based on multilayer MnO2 /graphene oxide nanoflakes and hierarchical porous carbon with enhanced cycling stability.
    Zhao Y; Ran W; He J; Huang Y; Liu Z; Liu W; Tang Y; Zhang L; Gao D; Gao F
    Small; 2015 Mar; 11(11):1310-9. PubMed ID: 25384679
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantum capacitance induced by electron orbital reconstruction of g-C
    Zhang K; Chen X; Tong Y; Zhang H; Zeng H; Ling J; Zhang M
    J Colloid Interface Sci; 2024 Jun; 663():478-490. PubMed ID: 38422974
    [TBL] [Abstract][Full Text] [Related]  

  • 25. MnO@carbon core-shell nanowires as stable high-performance anodes for lithium-ion batteries.
    Li X; Xiong S; Li J; Liang X; Wang J; Bai J; Qian Y
    Chemistry; 2013 Aug; 19(34):11310-9. PubMed ID: 23843271
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile fabrication of Ni
    Wang S; Ma S
    Dalton Trans; 2019 Mar; 48(12):3906-3913. PubMed ID: 30815654
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-Dimensional Assembly of Conductive and Capacitive Metal Oxide Electrodes for High-Performance Asymmetric Supercapacitors.
    Harilal M; Vidyadharan B; Misnon II; Anilkumar GM; Lowe A; Ismail J; Yusoff MM; Jose R
    ACS Appl Mater Interfaces; 2017 Mar; 9(12):10730-10742. PubMed ID: 28266837
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-performance asymmetric supercapacitor based on graphene hydrogel and nanostructured MnO2.
    Gao H; Xiao F; Ching CB; Duan H
    ACS Appl Mater Interfaces; 2012 May; 4(5):2801-10. PubMed ID: 22545683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly flexible pseudocapacitor based on freestanding heterogeneous MnO2/conductive polymer nanowire arrays.
    Duay J; Gillette E; Liu R; Lee SB
    Phys Chem Chem Phys; 2012 Mar; 14(10):3329-37. PubMed ID: 22298230
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ti-Doped Tunnel-Type Na
    Ji P; Zhang C; Wan J; Zhou M; Xi Y; Guo H; Hu C; Gu X; Wang C; Xue W
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):28900-28908. PubMed ID: 31318206
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hierarchical ternary Ni-Co-Se nanowires for high-performance supercapacitor device design.
    Guo K; Cui S; Hou H; Chen W; Mi L
    Dalton Trans; 2016 Dec; 45(48):19458-19465. PubMed ID: 27885371
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interconnected hierarchical NiCo
    Cheng M; Fan H; Song Y; Cui Y; Wang R
    Dalton Trans; 2017 Jul; 46(28):9201-9209. PubMed ID: 28678249
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ag/MnO₂ Nanorod as Electrode Material for High-Performance Electrochemical Supercapacitors.
    Guo Z; Guan Y; Dai C; Mu J; Che H; Wang G; Zhang X; Zhang Z; Zhang X
    J Nanosci Nanotechnol; 2018 Jul; 18(7):4904-4909. PubMed ID: 29442672
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hierarchical Mn₂O₃ Microspheres In-Situ Coated with Carbon for Supercapacitors with Highly Enhanced Performances.
    Gong F; Lu S; Peng L; Zhou J; Kong J; Jia D; Li F
    Nanomaterials (Basel); 2017 Nov; 7(12):. PubMed ID: 29168756
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In situ construction of hierarchical Co/MnO@graphite carbon composites for highly supercapacitive and OER electrocatalytic performances.
    Xu J; Zhang H; Xu P; Wang R; Tong Y; Lu Q; Gao F
    Nanoscale; 2018 Jul; 10(28):13702-13712. PubMed ID: 29989638
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soybean Root-Derived Hierarchical Porous Carbon as Electrode Material for High-Performance Supercapacitors in Ionic Liquids.
    Guo N; Li M; Wang Y; Sun X; Wang F; Yang R
    ACS Appl Mater Interfaces; 2016 Dec; 8(49):33626-33634. PubMed ID: 27960404
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing electrochemical reaction sites in nickel-cobalt layered double hydroxides on zinc tin oxide nanowires: a hybrid material for an asymmetric supercapacitor device.
    Wang X; Sumboja A; Lin M; Yan J; Lee PS
    Nanoscale; 2012 Nov; 4(22):7266-72. PubMed ID: 23076678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Design and synthesis of MnO₂/Mn/MnO₂ sandwich-structured nanotube arrays with high supercapacitive performance for electrochemical energy storage.
    Li Q; Wang ZL; Li GR; Guo R; Ding LX; Tong YX
    Nano Lett; 2012 Jul; 12(7):3803-7. PubMed ID: 22730918
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Core/sheath structured ultralong MnO
    Fu J; Zhang Y; Zhao H; Jiang R; Zhang R
    J Colloid Interface Sci; 2020 Feb; 559():39-44. PubMed ID: 31610303
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Approach to Preparing Ni-P with Different Phases for Use as Supercapacitor Electrode Materials.
    Wang D; Kong LB; Liu MC; Luo YC; Kang L
    Chemistry; 2015 Dec; 21(49):17897-903. PubMed ID: 26477441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.