BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 30836752)

  • 21. Self-assembly and gelation properties of glycine/leucine Fmoc-dipeptides.
    Tang C; Ulijn RV; Saiani A
    Eur Phys J E Soft Matter; 2013 Oct; 36(10):111. PubMed ID: 24085660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the sequence and size of non-polar residues on self-assembly of amphiphilic peptides.
    Wang K; Keasling JD; Muller SJ
    Int J Biol Macromol; 2005 Sep; 36(4):232-40. PubMed ID: 16055181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Morphology control of one-dimensional peptide nanostructures.
    Han TH; Park JS; Oh JK; Kim SO
    J Nanosci Nanotechnol; 2008 Oct; 8(10):5547-50. PubMed ID: 19198495
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Self-assembly of a designed amyloid peptide containing the functional thienylalanine unit.
    Hamley IW; Brown GD; Castelletto V; Cheng G; Venanzi M; Caruso M; Placidi E; Aleman C; Revilla-López G; Zanuy D
    J Phys Chem B; 2010 Aug; 114(32):10674-83. PubMed ID: 20662537
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning β-sheet peptide self-assembly and hydrogelation behavior by modification of sequence hydrophobicity and aromaticity.
    Bowerman CJ; Liyanage W; Federation AJ; Nilsson BL
    Biomacromolecules; 2011 Jul; 12(7):2735-45. PubMed ID: 21568346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of end-capping on the self-assembly of model amyloid peptide fragments.
    Castelletto V; Hamley IW; Cenker Ç; Olsson U; Adamcik J; Mezzenga R; Miravet JF; Escuder B; Rodríguez-Llansola F
    J Phys Chem B; 2011 Mar; 115(9):2107-16. PubMed ID: 21309578
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Electrostatic and aromatic interaction-directed supramolecular self-assembly of a designed Fmoc-tripeptide into helical nanoribbons.
    Xie Y; Wang X; Huang R; Qi W; Wang Y; Su R; He Z
    Langmuir; 2015 Mar; 31(9):2885-94. PubMed ID: 25694059
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Solvent Controlled Structural Transition of KI4K Self-Assemblies: from Nanotubes to Nanofibrils.
    Zhao Y; Deng L; Wang J; Xu H; Lu JR
    Langmuir; 2015 Dec; 31(47):12975-83. PubMed ID: 26540520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dynamic peptide libraries for the discovery of supramolecular nanomaterials.
    Pappas CG; Shafi R; Sasselli IR; Siccardi H; Wang T; Narang V; Abzalimov R; Wijerathne N; Ulijn RV
    Nat Nanotechnol; 2016 Nov; 11(11):960-967. PubMed ID: 27694850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hierarchical organization of ferrocene-peptides.
    Beheshti S; Martić S; Kraatz HB
    Chemistry; 2012 Jul; 18(29):9099-105. PubMed ID: 22707407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrostatic effects on nanofiber formation of self-assembling peptide amphiphiles.
    Toksoz S; Mammadov R; Tekinay AB; Guler MO
    J Colloid Interface Sci; 2011 Apr; 356(1):131-7. PubMed ID: 21269637
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Solvent-Tuned Self-Assembled Nanostructures of Chiral l/d-Phenylalanine Derivatives of Protoporphyrin IX.
    Bobe MS; Al Kobaisi M; Bhosale SV; Bhosale SV
    ChemistryOpen; 2015 Aug; 4(4):516-22. PubMed ID: 26478848
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Diversity and Hierarchy in Supramolecular Assemblies of Triphenylalanine: From Laminated Helical Ribbons to Toroids.
    Mayans E; Casanovas J; Gil AM; Jiménez AI; Cativiela C; Puiggalí J; Alemán C
    Langmuir; 2017 Apr; 33(16):4036-4048. PubMed ID: 28374591
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trace Solvent as a Predominant Factor To Tune Dipeptide Self-Assembly.
    Wang J; Liu K; Yan L; Wang A; Bai S; Yan X
    ACS Nano; 2016 Feb; 10(2):2138-43. PubMed ID: 26756339
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Self-assembly of 1-D n-type nanostructures based on naphthalene diimide-appended dipeptides.
    Shao H; Nguyen T; Romano NC; Modarelli DA; Parquette JR
    J Am Chem Soc; 2009 Nov; 131(45):16374-6. PubMed ID: 19852501
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamics for the Self-Assembly of Alkylated Peptides.
    Sato A; Ikeda K; Nakao H; Nakano M
    Langmuir; 2022 Sep; 38(38):11801-11809. PubMed ID: 36101985
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing.
    Paramonov SE; Jun HW; Hartgerink JD
    J Am Chem Soc; 2006 Jun; 128(22):7291-8. PubMed ID: 16734483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides.
    Xing Q; Zhang J; Xie Y; Wang Y; Qi W; Rao H; Su R; He Z
    ACS Nano; 2018 Dec; 12(12):12305-12314. PubMed ID: 30452865
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Self-assembly of aromatic α-amino acids into amyloid inspired nano/micro scaled architects.
    Singh P; Brar SK; Bajaj M; Narang N; Mithu VS; Katare OP; Wangoo N; Sharma RK
    Mater Sci Eng C Mater Biol Appl; 2017 Mar; 72():590-600. PubMed ID: 28024626
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A model for the controlled assembly of semiconductor peptides.
    Kim SH; Parquette JR
    Nanoscale; 2012 Nov; 4(22):6940-7. PubMed ID: 23034819
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.