These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
204 related articles for article (PubMed ID: 30836980)
1. Towards embedding Caco-2 model of gut interface in a microfluidic device to enable multi-organ models for systems biology. Sakharov D; Maltseva D; Knyazev E; Nikulin S; Poloznikov A; Shilin S; Baranova A; Tsypina I; Tonevitsky A BMC Syst Biol; 2019 Mar; 13(Suppl 1):19. PubMed ID: 30836980 [TBL] [Abstract][Full Text] [Related]
2. Erratum: Scalable Fabrication of Stretchable, Dual Channel, Microfluidic Organ Chips. J Vis Exp; 2019 May; (147):. PubMed ID: 31067212 [TBL] [Abstract][Full Text] [Related]
3. Microfluidic Gut-liver chip for reproducing the first pass metabolism. Choe A; Ha SK; Choi I; Choi N; Sung JH Biomed Microdevices; 2017 Mar; 19(1):4. PubMed ID: 28074384 [TBL] [Abstract][Full Text] [Related]
4. A multi-chamber microfluidic intestinal barrier model using Caco-2 cells for drug transport studies. Tan HY; Trier S; Rahbek UL; Dufva M; Kutter JP; Andresen TL PLoS One; 2018; 13(5):e0197101. PubMed ID: 29746551 [TBL] [Abstract][Full Text] [Related]
5. Comparison of Profiles of Extracellular MicroRNA Secreted by Caco-2 Cells from the Apical Side of the Membrane under Static and Microcirculation Conditions. Nikulin SV; Gerasimenko TN; Shilin SA; Gazizov IN; Kindeeva OV; Sakharov DA Bull Exp Biol Med; 2019 Mar; 166(5):626-630. PubMed ID: 30903497 [TBL] [Abstract][Full Text] [Related]
6. Intestinal Permeability of Drugs in Caco-2 Cells Cultured in Microfluidic Devices. Sasaki Y; Tatsuoka H; Tsuda M; Sumi T; Eguchi Y; So K; Higuchi Y; Takayama K; Torisawa Y; Yamashita F Biol Pharm Bull; 2022; 45(9):1246-1253. PubMed ID: 36047192 [TBL] [Abstract][Full Text] [Related]
7. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Odijk M; van der Meer AD; Levner D; Kim HJ; van der Helm MW; Segerink LI; Frimat JP; Hamilton GA; Ingber DE; van den Berg A Lab Chip; 2015 Feb; 15(3):745-52. PubMed ID: 25427650 [TBL] [Abstract][Full Text] [Related]
8. Microfluidic gut-on-a-chip with three-dimensional villi structure. Shim KY; Lee D; Han J; Nguyen NT; Park S; Sung JH Biomed Microdevices; 2017 Jun; 19(2):37. PubMed ID: 28451924 [TBL] [Abstract][Full Text] [Related]
9. Non-invasive sensing of transepithelial barrier function and tissue differentiation in organs-on-chips using impedance spectroscopy. van der Helm MW; Henry OYF; Bein A; Hamkins-Indik T; Cronce MJ; Leineweber WD; Odijk M; van der Meer AD; Eijkel JCT; Ingber DE; van den Berg A; Segerink LI Lab Chip; 2019 Jan; 19(3):452-463. PubMed ID: 30632575 [TBL] [Abstract][Full Text] [Related]
10. A microfluidic cell culture device (μFCCD) to culture epithelial cells with physiological and morphological properties that mimic those of the human intestine. Chi M; Yi B; Oh S; Park DJ; Sung JH; Park S Biomed Microdevices; 2015; 17(3):9966. PubMed ID: 26002774 [TBL] [Abstract][Full Text] [Related]
12. A systematic investigation of the effect of the fluid shear stress on Caco-2 cells towards the optimization of epithelial organ-on-chip models. Delon LC; Guo Z; Oszmiana A; Chien CC; Gibson R; Prestidge C; Thierry B Biomaterials; 2019 Dec; 225():119521. PubMed ID: 31600674 [TBL] [Abstract][Full Text] [Related]
13. Direct On-Chip Differentiation of Intestinal Tubules from Induced Pluripotent Stem Cells. Naumovska E; Aalderink G; Wong Valencia C; Kosim K; Nicolas A; Brown S; Vulto P; Erdmann KS; Kurek D Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32674311 [TBL] [Abstract][Full Text] [Related]
14. Organ chips with integrated multifunctional sensors enable continuous metabolic monitoring at controlled oxygen levels. Izadifar Z; Charrez B; Almeida M; Robben S; Pilobello K; van der Graaf-Mas J; Marquez SL; Ferrante TC; Shcherbina K; Gould R; LoGrande NT; Sesay AM; Ingber DE Biosens Bioelectron; 2024 Dec; 265():116683. PubMed ID: 39213819 [TBL] [Abstract][Full Text] [Related]
15. Unlocking the Potential of Organ-on-Chip Models through Pumpless and Tubeless Microfluidics. Delon LC; Nilghaz A; Cheah E; Prestidge C; Thierry B Adv Healthc Mater; 2020 Jun; 9(11):e1901784. PubMed ID: 32342669 [TBL] [Abstract][Full Text] [Related]
16. Intestinal Models for Personalized Medicine: from Conventional Models to Microfluidic Primary Intestine-on-a-chip. Li XG; Chen MX; Zhao SQ; Wang XQ Stem Cell Rev Rep; 2022 Aug; 18(6):2137-2151. PubMed ID: 34181185 [TBL] [Abstract][Full Text] [Related]
17. Organ/body-on-a-chip based on microfluidic technology for drug discovery. Kimura H; Sakai Y; Fujii T Drug Metab Pharmacokinet; 2018 Feb; 33(1):43-48. PubMed ID: 29175062 [TBL] [Abstract][Full Text] [Related]
18. An on-chip small intestine-liver model for pharmacokinetic studies. Kimura H; Ikeda T; Nakayama H; Sakai Y; Fujii T J Lab Autom; 2015 Jun; 20(3):265-73. PubMed ID: 25385717 [TBL] [Abstract][Full Text] [Related]
19. Microfluidic chip for culturing intestinal epithelial cell layers: Characterization and comparison of drug transport between dynamic and static models. Kulthong K; Duivenvoorde L; Sun H; Confederat S; Wu J; Spenkelink B; de Haan L; Marin V; van der Zande M; Bouwmeester H Toxicol In Vitro; 2020 Jun; 65():104815. PubMed ID: 32119998 [TBL] [Abstract][Full Text] [Related]
20. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Kimura H; Yamamoto T; Sakai H; Sakai Y; Fujii T Lab Chip; 2008 May; 8(5):741-6. PubMed ID: 18432344 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]