These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
99 related articles for article (PubMed ID: 3083715)
1. An automated method for the quasi-continuous analysis of degradation and transfer products during the enzymatic hydrolysis of oligosaccharides. Schmid G; Wandrey C Anal Biochem; 1986 Feb; 153(1):144-50. PubMed ID: 3083715 [TBL] [Abstract][Full Text] [Related]
2. Cello-oligosaccharide hydrolysis by cellobiohydrolase II from Trichoderma reesei. Association and rate constants derived from an analysis of progress curves. Harjunpää V; Teleman A; Koivula A; Ruohonen L; Teeri TT; Teleman O; Drakenberg T Eur J Biochem; 1996 Sep; 240(3):584-91. PubMed ID: 8856058 [TBL] [Abstract][Full Text] [Related]
3. Beta-glucosidase from Trichoderma reesei. Substrate-binding region and mode of action on [1-3H]cello-oligosaccharides. Chirico WJ; Brown RD Eur J Biochem; 1987 Jun; 165(2):343-51. PubMed ID: 3109901 [TBL] [Abstract][Full Text] [Related]
4. Analysis of mono- and oligosaccharides in ionic liquid containing matrices. Wahlström R; Rovio S; Suurnäkki A Carbohydr Res; 2013 May; 373():42-51. PubMed ID: 23583452 [TBL] [Abstract][Full Text] [Related]
5. Saccharification of biomass using whole solid-state fermentation medium to avoid additional separation steps. Pirota RD; Baleeiro FC; Farinas CS Biotechnol Prog; 2013; 29(6):1430-40. PubMed ID: 24115639 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of 2-deoxy-glucooligosaccharides through condensation of 2-deoxy-D-glucose by glucoamylase and alpha-glucosidase. Nakano H; Hamayasu K; Fujita K; Hara K; Ohi M; Yoshizumi H; Kitahata S Biosci Biotechnol Biochem; 1995 Sep; 59(9):1732-6. PubMed ID: 8520115 [TBL] [Abstract][Full Text] [Related]
7. Subsite structure of the beta-glucosidase from Aspergillus niger, evaluated by steady-state kinetics with cello-oligosaccharides as substrates. Yazaki T; Ohnishi M; Rokushika S; Okada G Carbohydr Res; 1997 Feb; 298(1-2):51-7. PubMed ID: 9076931 [TBL] [Abstract][Full Text] [Related]
8. Subsite affinities of Aspergillus niger glucoamylase II determined with p-nitrophenylmaltooligosaccharides. Ermer J; Rose K; Hübner G; Schellenberger A Biol Chem Hoppe Seyler; 1993 Feb; 374(2):123-8. PubMed ID: 8471180 [TBL] [Abstract][Full Text] [Related]
9. Hydrolysis of cellulose using ternary mixtures of purified cellulases. Baker JO; Ehrman CI; Adney WS; Thomas SR; Himmel ME Appl Biochem Biotechnol; 1998; 70-72():395-403. PubMed ID: 9627391 [TBL] [Abstract][Full Text] [Related]
10. Secretome analysis of Trichoderma reesei and Aspergillus niger cultivated by submerged and sequential fermentation processes: Enzyme production for sugarcane bagasse hydrolysis. Florencio C; Cunha FM; Badino AC; Farinas CS; Ximenes E; Ladisch MR Enzyme Microb Technol; 2016 Aug; 90():53-60. PubMed ID: 27241292 [TBL] [Abstract][Full Text] [Related]
11. Physiochemical and Thermodynamic Characterization of Highly Active Mutated Aspergillus niger β-glucosidase for Lignocellulose Hydrolysis. Javed MR; Rashid MH; Riaz M; Nadeem H; Qasim M; Ashiq N Protein Pept Lett; 2018; 25(2):208-219. PubMed ID: 29384047 [TBL] [Abstract][Full Text] [Related]
12. Comparison of two beta-glucosidases for the enzymatic synthesis of beta-(1-6)-beta-(1-3)-gluco-oligosaccharides. Smaali MI; Michaud N; Marzouki N; Legoy MD; Maugard T Biotechnol Lett; 2004 Apr; 26(8):675-9. PubMed ID: 15200180 [TBL] [Abstract][Full Text] [Related]
13. Purification and characterization of three β-glycosidases exhibiting high glucose tolerance from Aspergillus niger ASKU28. Thongpoo P; Srisomsap C; Chokchaichamnankit D; Kitpreechavanich V; Svasti J; Kongsaeree PT Biosci Biotechnol Biochem; 2014; 78(7):1167-76. PubMed ID: 25229852 [TBL] [Abstract][Full Text] [Related]
14. Effect of pretreatment severity on accumulation of major degradation products from dilute acid pretreated corn stover and subsequent inhibition of enzymatic hydrolysis of cellulose. Um BH; van Walsum GP Appl Biochem Biotechnol; 2012 Sep; 168(2):406-20. PubMed ID: 22782642 [TBL] [Abstract][Full Text] [Related]
16. Study of a High-Yield Cellulase System Created by Heavy-Ion Irradiation-Induced Mutagenesis of Aspergillus niger and Mixed Fermentation with Trichoderma reesei. Wang SY; Jiang BL; Zhou X; Chen JH; Li WJ; Liu J; Hu W; Xiao GQ; Dong MY; Wang YC PLoS One; 2015; 10(12):e0144233. PubMed ID: 26656155 [TBL] [Abstract][Full Text] [Related]
17. Impact of regeneration process on the crystalline structure and enzymatic hydrolysis of cellulose obtained from ionic liquid. Cao X; Peng X; Sun S; Zhong L; Wang S; Lu F; Sun R Carbohydr Polym; 2014 Oct; 111():400-3. PubMed ID: 25037367 [TBL] [Abstract][Full Text] [Related]
18. Fine substrate specificities of four exo-type cellulases produced by Aspergillus niger, Trichoderma reesei, and Irpex lacteus on (1-->3), (1-->4)-beta-D-glucans and xyloglucan. Amano Y; Shiroishi M; Nisizawa K; Hoshino E; Kanda T J Biochem; 1996 Dec; 120(6):1123-9. PubMed ID: 9010760 [TBL] [Abstract][Full Text] [Related]
19. [Comparative role of exo-1,4-beta-glucosidase and cellobiase in the enzymatic hydrolysis of cellulose]. Sinitsyn AP; Klesov AA Biokhimiia; 1981 Feb; 46(2):202-13. PubMed ID: 6788099 [TBL] [Abstract][Full Text] [Related]
20. Action of glucoamylase from Aspergillus niger on phosphorylated substrate. Abe JI; Takeda Y; Hizukuri S Biochim Biophys Acta; 1982 Apr; 703(1):26-33. PubMed ID: 6803838 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]