BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30837162)

  • 1. Elucidation of retention behaviors in reversed-phase liquid chromatography as a function of mobile phase composition.
    Tsui HW; Kuo CH; Huang YC
    J Chromatogr A; 2019 Jun; 1595():127-135. PubMed ID: 30837162
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elucidation of adsorption mechanisms of solvent molecules with distinct functional groups on amylose tris(3,5-dimethylphenylcarbamate)-based sorbent.
    Wu SG; Lin AY; Hsieh HY; Tsui HW
    J Chromatogr A; 2016 Aug; 1460():123-34. PubMed ID: 27432786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of solvent composition on the van't Hoff enthalpic curve using amylose 3,5-dichlorophenylcarbamate-based sorbent.
    Lin AY; Cheng KT; Chen SC; Tsui HW
    J Chromatogr A; 2017 Sep; 1515():179-186. PubMed ID: 28803646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent effects on the retention mechanisms of an amylose-based sorbent.
    Tsui HW; Cheng KT; Lin AY; Chen SC; Hung YL; Chou PY
    J Chromatogr A; 2018 Jun; 1556():64-72. PubMed ID: 29731289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigations into the thermodynamics of polypeptide interaction with nonpolar ligands.
    Hearn MT; Zhao G
    Anal Chem; 1999 Nov; 71(21):4874-85. PubMed ID: 10565277
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retention models and interaction mechanisms of benzene and other aromatic molecules with an amylose-based sorbent.
    Hsieh HY; Wu SG; Tsui HW
    J Chromatogr A; 2017 Apr; 1494():55-64. PubMed ID: 28320536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Retention models and interaction mechanisms of acetone and other carbonyl-containing molecules with amylose tris[(S)-α-methylbenzylcarbamate] sorbent.
    Tsui HW; Hwang MY; Ling L; Franses EI; Wang NH
    J Chromatogr A; 2013 Mar; 1279():36-48. PubMed ID: 23374367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of three temperature- and mobile phase-dependent retention models for reversed-phase liquid chromatographic retention and apparent retention enthalpy.
    Horner AR; Wilson RE; Groskreutz SR; Murray BE; Weber SG
    J Chromatogr A; 2019 Mar; 1589():73-82. PubMed ID: 30626503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of alcohol aggregation on the retention factors of chiral solutes with an amylose-based sorbent: modeling and implications for the adsorption mechanism.
    Tsui HW; Franses EI; Wang NH
    J Chromatogr A; 2014 Feb; 1328():52-65. PubMed ID: 24444802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights from molecular simulations about dead time markers in reversed-phase liquid chromatography.
    Trebel N; Höltzel A; Steinhoff A; Tallarek U
    J Chromatogr A; 2021 Mar; 1640():461958. PubMed ID: 33582514
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mobile phase effects in reversed-phase liquid chromatography: a comparison of acetonitrile/water and methanol/water solvents as studied by molecular simulation.
    Rafferty JL; Siepmann JI; Schure MR
    J Chromatogr A; 2011 Apr; 1218(16):2203-13. PubMed ID: 21388628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic interpretation of the drift and noise of gradient baselines in reversed-phase liquid chromatography using mobile phase additives.
    Gritti F
    J Chromatogr A; 2020 Dec; 1633():461605. PubMed ID: 33128973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Retention modeling and adsorption mechanisms in reversed-phase liquid chromatography.
    Tsui HW; Lin SZ; Hsu YC; Dai FJ
    J Chromatogr A; 2022 Jan; 1662():462736. PubMed ID: 34923304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of phase ratio on van't Hoff analysis in reversed-phase liquid chromatography, and phase-ratio-independent estimation of transfer enthalpy.
    Chester TL; Coym JW
    J Chromatogr A; 2003 Jun; 1003(1-2):101-11. PubMed ID: 12899299
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into the retention mechanism on an octadecylsiloxane-bonded silica stationary phase (HyPURITY C18) in reversed-phase liquid chromatography.
    Poole CF; Kiridena W; DeKay C; Koziol WW; Rosencrans RD
    J Chromatogr A; 2006 May; 1115(1-2):133-41. PubMed ID: 16564531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Adsorption, separation, and purification of cyclosporine A using reversed-phase liquid chromatography].
    Li Z; Fu Q; Dai Z; Jin Y; Liang X
    Se Pu; 2022 Jan; 40(1):66-73. PubMed ID: 34985217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does phase ratio in reversed phase high performance liquid chromatography vary with temperature?
    Soare AC; David V; Moldoveanu SC
    J Chromatogr A; 2020 Jun; 1620():461023. PubMed ID: 32173021
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the solvent strength parameter (linear solvent strength model) for isocratic separations in reversed-phase liquid chromatography.
    Poole CF; Atapattu SN
    J Chromatogr A; 2022 Jul; 1675():463153. PubMed ID: 35609444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the organic modifier concentration on the retention in reversed-phase liquid chromatography I. General semi-thermodynamic treatment for adsorption and partition mechanisms.
    Nikitas P; Pappa-Louisi A; Agrafiotou P
    J Chromatogr A; 2002 Feb; 946(1-2):9-32. PubMed ID: 11873986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Greening pharmaceutical applications of liquid chromatography through using propylene carbonate-ethanol mixtures instead of acetonitrile as organic modifier in the mobile phases.
    Tache F; Udrescu S; Albu F; Micăle F; Medvedovici A
    J Pharm Biomed Anal; 2013 Mar; 75():230-8. PubMed ID: 23277155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.