These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 30837343)
1. Distinct Physiological Roles of the Three Ferredoxins Encoded in the Hyperthermophilic Archaeon Burkhart BW; Febvre HP; Santangelo TJ mBio; 2019 Mar; 10(2):. PubMed ID: 30837343 [TBL] [Abstract][Full Text] [Related]
2. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways. Atkinson JT; Campbell I; Bennett GN; Silberg JJ Biochemistry; 2016 Dec; 55(51):7047-7064. PubMed ID: 27966889 [TBL] [Abstract][Full Text] [Related]
3. Characterization and cloning of an extremely thermostable, Pyrococcus furiosus-type 4Fe ferredoxin from Thermococcus profundus. Imai T; Taguchi K; Ogawara Y; Ohmori D; Yamakura F; Ikezawa H; Urushiyama A J Biochem; 2001 Nov; 130(5):649-55. PubMed ID: 11686927 [TBL] [Abstract][Full Text] [Related]
4. An Archaeal Fluoride-Responsive Riboswitch Provides an Inducible Expression System for Hyperthermophiles. Speed MC; Burkhart BW; Picking JW; Santangelo TJ Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29352088 [TBL] [Abstract][Full Text] [Related]
5. Energy conservation via electron bifurcating ferredoxin reduction and proton/Na(+) translocating ferredoxin oxidation. Buckel W; Thauer RK Biochim Biophys Acta; 2013 Feb; 1827(2):94-113. PubMed ID: 22800682 [TBL] [Abstract][Full Text] [Related]
6. Genetic examination and mass balance analysis of pyruvate/amino acid oxidation pathways in the hyperthermophilic archaeon Thermococcus kodakarensis. Nohara K; Orita I; Nakamura S; Imanaka T; Fukui T J Bacteriol; 2014 Nov; 196(22):3831-9. PubMed ID: 25157082 [TBL] [Abstract][Full Text] [Related]
7. Dynamics and energetics of cyanobacterial photosystem I:ferredoxin complexes in different redox states. Sétif P; Mutoh R; Kurisu G Biochim Biophys Acta Bioenerg; 2017 Jul; 1858(7):483-496. PubMed ID: 28427865 [TBL] [Abstract][Full Text] [Related]
8. A Structurally Novel Lipoyl Synthase in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Jin JQ; Hachisuka SI; Sato T; Fujiwara T; Atomi H Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32978128 [TBL] [Abstract][Full Text] [Related]
9. Rational redesign of the ferredoxin-NADP Wiegand K; Winkler M; Rumpel S; Kannchen D; Rexroth S; Hase T; Farès C; Happe T; Lubitz W; Rögner M Biochim Biophys Acta Bioenerg; 2018 Apr; 1859(4):253-262. PubMed ID: 29378161 [TBL] [Abstract][Full Text] [Related]
10. Direct Electron Transfer between the Jung HC; Lim JK; Yang TJ; Kang SG; Lee HS Appl Environ Microbiol; 2020 Mar; 86(6):. PubMed ID: 31924613 [TBL] [Abstract][Full Text] [Related]
11. The TK0271 Protein Activates Transcription of Aromatic Amino Acid Biosynthesis Genes in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Yamamoto Y; Kanai T; Kaneseki T; Atomi H mBio; 2019 Sep; 10(5):. PubMed ID: 31506306 [TBL] [Abstract][Full Text] [Related]
12. Metabolism Dealing with Thermal Degradation of NAD Hachisuka SI; Sato T; Atomi H J Bacteriol; 2017 Oct; 199(19):. PubMed ID: 28652302 [TBL] [Abstract][Full Text] [Related]
13. Identification of Dephospho-Coenzyme A (Dephospho-CoA) Kinase in Thermococcus kodakarensis and Elucidation of the Entire CoA Biosynthesis Pathway in Archaea. Shimosaka T; Makarova KS; Koonin EV; Atomi H mBio; 2019 Jul; 10(4):. PubMed ID: 31337720 [TBL] [Abstract][Full Text] [Related]
14. Evolving a New Electron Transfer Pathway for Nitrogen Fixation Uncovers an Electron Bifurcating-Like Enzyme Involved in Anaerobic Aromatic Compound Degradation. Lewis NM; Sarne A; Fixen KR mBio; 2023 Feb; 14(1):e0288122. PubMed ID: 36645294 [TBL] [Abstract][Full Text] [Related]
15. Genetic examination of initial amino acid oxidation and glutamate catabolism in the hyperthermophilic archaeon Thermococcus kodakarensis. Yokooji Y; Sato T; Fujiwara S; Imanaka T; Atomi H J Bacteriol; 2013 May; 195(9):1940-8. PubMed ID: 23435976 [TBL] [Abstract][Full Text] [Related]
16. TK1211 Encodes an Amino Acid Racemase towards Leucine and Methionine in the Hyperthermophilic Archaeon Thermococcus kodakarensis. Zheng RC; Lu XF; Tomita H; Hachisuka SI; Zheng YG; Atomi H J Bacteriol; 2021 Mar; 203(7):. PubMed ID: 33468590 [TBL] [Abstract][Full Text] [Related]
17. Plant type ferredoxins and ferredoxin-dependent metabolism. Hanke G; Mulo P Plant Cell Environ; 2013 Jun; 36(6):1071-84. PubMed ID: 23190083 [TBL] [Abstract][Full Text] [Related]
18. Distinct physiological roles of the three [NiFe]-hydrogenase orthologs in the hyperthermophilic archaeon Thermococcus kodakarensis. Kanai T; Matsuoka R; Beppu H; Nakajima A; Okada Y; Atomi H; Imanaka T J Bacteriol; 2011 Jun; 193(12):3109-16. PubMed ID: 21515783 [TBL] [Abstract][Full Text] [Related]
19. Genes regulated by branched-chain polyamine in the hyperthermophilic archaeon Thermococcus kodakarensis. Fukuda W; Yamori Y; Hamakawa M; Osaki M; Fukuda M; Hidese R; Kanesaki Y; Okamoto-Kainuma A; Kato S; Fujiwara S Amino Acids; 2020 Feb; 52(2):287-299. PubMed ID: 31621031 [TBL] [Abstract][Full Text] [Related]
20. Effects of high-level expression of A Simons JR; Beppu H; Imanaka T; Kanai T; Atomi H J Biosci Bioeng; 2020 Aug; 130(2):149-158. PubMed ID: 32414665 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]