BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 30837594)

  • 1. Unexpected genomic rearrangements at targeted loci associated with CRISPR/Cas9-mediated knock-in.
    Rezza A; Jacquet C; Le Pillouer A; Lafarguette F; Ruptier C; Billandon M; Isnard Petit P; Trouttet S; Thiam K; Fraichard A; Chérifi Y
    Sci Rep; 2019 Mar; 9(1):3486. PubMed ID: 30837594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating Knockin Alleles in Mouse Embryonic Stem Cells by CRISPR/Cas9-Mediated Homologous Recombination Without Drug Selection.
    Liu P; Li Y; Lei J; Dong L
    Methods Mol Biol; 2019; 1874():115-137. PubMed ID: 30353511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.
    Wang B; Li K; Wang A; Reiser M; Saunders T; Lockey RF; Wang JW
    Biotechniques; 2015 Oct; 59(4):201-2, 204, 206-8. PubMed ID: 26458548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes.
    Chu VT; Weber T; Graf R; Sommermann T; Petsch K; Sack U; Volchkov P; Rajewsky K; Kühn R
    BMC Biotechnol; 2016 Jan; 16():4. PubMed ID: 26772810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system.
    Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K
    Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Creation of knock out and knock in mice by CRISPR/Cas9 to validate candidate genes for human male infertility, interest, difficulties and feasibility.
    Kherraf ZE; Conne B; Amiri-Yekta A; Kent MC; Coutton C; Escoffier J; Nef S; Arnoult C; Ray PF
    Mol Cell Endocrinol; 2018 Jun; 468():70-80. PubMed ID: 29522859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Specific Integration of Exogenous Genes Using Genome Editing Technologies in Zebrafish.
    Kawahara A; Hisano Y; Ota S; Taimatsu K
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27187373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR/Cas9 Genome Editing in Embryonic Stem Cells.
    Andrey G; Spielmann M
    Methods Mol Biol; 2017; 1468():221-34. PubMed ID: 27662879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of α-1,3-Galactosyltransferase-Deficient Porcine Embryonic Fibroblasts by CRISPR/Cas9-Mediated Knock-in of a Small Mutated Sequence and a Targeted Toxin-Based Selection System.
    Sato M; Kagoshima A; Saitoh I; Inada E; Miyoshi K; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S
    Reprod Domest Anim; 2015 Oct; 50(5):872-80. PubMed ID: 26138589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homology arms of targeting vectors for gene insertions and CRISPR/Cas9 technology: size does not matter; quality control of targeted clones does.
    Petrezselyova S; Kinsky S; Truban D; Sedlacek R; Burtscher I; Lickert H
    Cell Mol Biol Lett; 2015 Dec; 20(5):773-87. PubMed ID: 26540224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Precise in-frame integration of exogenous DNA mediated by CRISPR/Cas9 system in zebrafish.
    Hisano Y; Sakuma T; Nakade S; Ohga R; Ota S; Okamoto H; Yamamoto T; Kawahara A
    Sci Rep; 2015 Mar; 5():8841. PubMed ID: 25740433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna.
    Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H
    PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of Large Fragment Knock-In Mouse Models by Microinjecting into 2-Cell Stage Embryos.
    Gu B; Gertsenstein M; Posfai E
    Methods Mol Biol; 2020; 2066():89-100. PubMed ID: 31512209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rosa26-targeted sheep gene knock-in via CRISPR-Cas9 system.
    Wu M; Wei C; Lian Z; Liu R; Zhu C; Wang H; Cao J; Shen Y; Zhao F; Zhang L; Mu Z; Wang Y; Wang X; Du L; Wang C
    Sci Rep; 2016 Apr; 6():24360. PubMed ID: 27063570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient CRISPR-Cas9-mediated generation of knockin human pluripotent stem cells lacking undesired mutations at the targeted locus.
    Merkle FT; Neuhausser WM; Santos D; Valen E; Gagnon JA; Maas K; Sandoe J; Schier AF; Eggan K
    Cell Rep; 2015 May; 11(6):875-883. PubMed ID: 25937281
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crispr/Cas9-mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region.
    Zhang F; Cheng D; Wang S; Zhu J
    Biotechnol Bioeng; 2020 Sep; 117(9):2816-2826. PubMed ID: 32449788
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of microsatellite instability in CRISPR/Cas9 editing mice.
    Huo X; Du Y; Lu J; Guo M; Li Z; Zhang S; Li X; Chen Z; Du X
    Mutat Res; 2017 Mar; 797-799():1-6. PubMed ID: 28284774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reporter gene knock-in into Marc-145 cells using CRISPR/Cas9-mediated homologous recombination.
    Chang Y; Shao J; Gao Y; Liu W; Gao Z; Hu Y; Chang H
    Biotechnol Lett; 2020 Aug; 42(8):1317-1325. PubMed ID: 32185620
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of Two Noradrenergic-Specific Dopamine-Beta-Hydroxylase-FLPo Knock-In Mice Using CRISPR/Cas9-Mediated Targeting in Embryonic Stem Cells.
    Sun JJ; Ray R
    PLoS One; 2016; 11(7):e0159474. PubMed ID: 27441631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large genomic fragment deletions and insertions in mouse using CRISPR/Cas9.
    Zhang L; Jia R; Palange NJ; Satheka AC; Togo J; An Y; Humphrey M; Ban L; Ji Y; Jin H; Feng X; Zheng Y
    PLoS One; 2015; 10(3):e0120396. PubMed ID: 25803037
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.