These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 30837606)

  • 21. A monoclonal antibody recognizes a highly conserved neutralizing epitope on hemagglutinin of H6N1 avian influenza virus.
    He JL; Hsieh MS; Juang RH; Wang CH
    Vet Microbiol; 2014 Dec; 174(3-4):333-341. PubMed ID: 25465660
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Broadly neutralizing anti-influenza virus antibodies: enhancement of neutralizing potency in polyclonal mixtures and IgA backbones.
    He W; Mullarkey CE; Duty JA; Moran TM; Palese P; Miller MS
    J Virol; 2015 Apr; 89(7):3610-8. PubMed ID: 25589655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An IgM antibody targeting the receptor binding site of influenza B blocks viral infection with great breadth and potency.
    Shen C; Zhang M; Chen Y; Zhang L; Wang G; Chen J; Chen S; Li Z; Wei F; Chen J; Yang K; Guo S; Wang Y; Zheng Q; Yu H; Luo W; Zhang J; Chen H; Chen Y; Xia N
    Theranostics; 2019; 9(1):210-231. PubMed ID: 30662563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Germline-Encoded Affinity for Cognate Antigen Enables Vaccine Amplification of a Human Broadly Neutralizing Response against Influenza Virus.
    Sangesland M; Ronsard L; Kazer SW; Bals J; Boyoglu-Barnum S; Yousif AS; Barnes R; Feldman J; Quirindongo-Crespo M; McTamney PM; Rohrer D; Lonberg N; Chackerian B; Graham BS; Kanekiyo M; Shalek AK; Lingwood D
    Immunity; 2019 Oct; 51(4):735-749.e8. PubMed ID: 31563464
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Divergent Requirement of Fc-Fcγ Receptor Interactions for
    Wang S; Ren H; Jiang W; Chen H; Hu H; Chen Z; Zhou P
    J Virol; 2017 Jun; 91(11):. PubMed ID: 28331095
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Monoclonal Antibody Responses after Recombinant Hemagglutinin Vaccine versus Subunit Inactivated Influenza Virus Vaccine: a Comparative Study.
    Henry C; Palm AE; Utset HA; Huang M; Ho IY; Zheng NY; Fitzgerald T; Neu KE; Chen YQ; Krammer F; Treanor JJ; Sant AJ; Topham DJ; Wilson PC
    J Virol; 2019 Nov; 93(21):. PubMed ID: 31434733
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Universal Influenza Vaccine Approaches Using Full-Length or Head-Only Hemagglutinin Proteins.
    Ross TM
    J Infect Dis; 2019 Apr; 219(Suppl_1):S57-S61. PubMed ID: 30715379
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A Computationally Optimized Broadly Reactive Antigen Subtype-Specific Influenza Vaccine Strategy Elicits Unique Potent Broadly Neutralizing Antibodies against Hemagglutinin.
    Sautto GA; Kirchenbaum GA; Abreu RB; Ecker JW; Pierce SR; Kleanthous H; Ross TM
    J Immunol; 2020 Jan; 204(2):375-385. PubMed ID: 31811019
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Epitope specificity plays a critical role in regulating antibody-dependent cell-mediated cytotoxicity against influenza A virus.
    He W; Tan GS; Mullarkey CE; Lee AJ; Lam MM; Krammer F; Henry C; Wilson PC; Ashkar AA; Palese P; Miller MS
    Proc Natl Acad Sci U S A; 2016 Oct; 113(42):11931-11936. PubMed ID: 27698132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An epitope on the stem region of hemagglutinin of H1N1 influenza A virus recognized by neutralizing monoclonal antibody.
    Yan L; Wang H; Sun L; Liu Y; Sun J; Zhao X; Li Y; Xie X; Hu J
    Biochem Biophys Res Commun; 2019 Oct; 518(2):319-324. PubMed ID: 31421820
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Antibodies to a Conserved Influenza Head Interface Epitope Protect by an IgG Subtype-Dependent Mechanism.
    Watanabe A; McCarthy KR; Kuraoka M; Schmidt AG; Adachi Y; Onodera T; Tonouchi K; Caradonna TM; Bajic G; Song S; McGee CE; Sempowski GD; Feng F; Urick P; Kepler TB; Takahashi Y; Harrison SC; Kelsoe G
    Cell; 2019 May; 177(5):1124-1135.e16. PubMed ID: 31100267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epistasis reduces fitness costs of influenza A virus escape from stem-binding antibodies.
    Lee CY; Raghunathan V; Caceres CJ; Geiger G; Seibert B; Cargnin Faccin F; Gay LC; Ferreri LM; Kaul D; Wrammert J; Tan GS; Perez DR; Lowen AC
    Proc Natl Acad Sci U S A; 2023 Apr; 120(17):e2208718120. PubMed ID: 37068231
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A candidate vaccine against influenza virus intensively improved the immunogenicity of a neutralizing epitope.
    Lu Y; Ding J; Liu W; Chen YH
    Int Arch Allergy Immunol; 2002 Mar; 127(3):245-50. PubMed ID: 11979050
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cross-neutralizing Anti-hemagglutinin Antibodies Isolated from Patients Infected with Avian Influenza A (H5N1) Virus.
    Sun Y; Cao Y; Li Z; Bai T; Zhang H; Hu SX; Li FC; Zhao X; Chen YK; Lu J; Liu LQ; Wang DY; Shu YL; Zhou JF
    Biomed Environ Sci; 2020 Feb; 33(2):103-113. PubMed ID: 32131957
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influenza immunization elicits antibodies specific for an egg-adapted vaccine strain.
    Raymond DD; Stewart SM; Lee J; Ferdman J; Bajic G; Do KT; Ernandes MJ; Suphaphiphat P; Settembre EC; Dormitzer PR; Del Giudice G; Finco O; Kang TH; Ippolito GC; Georgiou G; Kepler TB; Haynes BF; Moody MA; Liao HX; Schmidt AG; Harrison SC
    Nat Med; 2016 Dec; 22(12):1465-1469. PubMed ID: 27820604
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Polyreactive Broadly Neutralizing B cells Are Selected to Provide Defense against Pandemic Threat Influenza Viruses.
    Guthmiller JJ; Lan LY; Fernández-Quintero ML; Han J; Utset HA; Bitar DJ; Hamel NJ; Stovicek O; Li L; Tepora M; Henry C; Neu KE; Dugan HL; Borowska MT; Chen YQ; Liu STH; Stamper CT; Zheng NY; Huang M; Palm AE; García-Sastre A; Nachbagauer R; Palese P; Coughlan L; Krammer F; Ward AB; Liedl KR; Wilson PC
    Immunity; 2020 Dec; 53(6):1230-1244.e5. PubMed ID: 33096040
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Elicitation of broadly neutralizing influenza antibodies in animals with previous influenza exposure.
    Wei CJ; Yassine HM; McTamney PM; Gall JG; Whittle JR; Boyington JC; Nabel GJ
    Sci Transl Med; 2012 Aug; 4(147):147ra114. PubMed ID: 22896678
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Coarse-Grained Model of Affinity Maturation Indicates the Importance of B-Cell Receptor Avidity in Epitope Subdominance.
    Ovchinnikov V; Karplus M
    Front Immunol; 2022; 13():816634. PubMed ID: 35371013
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Elicitation of Protective Antibodies against 20 Years of Future H3N2 Cocirculating Influenza Virus Variants in Ferrets Preimmune to Historical H3N2 Influenza Viruses.
    Allen JD; Jang H; DiNapoli J; Kleanthous H; Ross TM
    J Virol; 2019 Feb; 93(3):. PubMed ID: 30429350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein Microarray Analysis of the Specificity and Cross-Reactivity of Influenza Virus Hemagglutinin-Specific Antibodies.
    Nakajima R; Supnet M; Jasinskas A; Jain A; Taghavian O; Obiero J; Milton DK; Chen WH; Grantham M; Webby R; Krammer F; Carter D; Felgner PL; Davies DH
    mSphere; 2018 Dec; 3(6):. PubMed ID: 30541779
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.