These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30837626)

  • 1. Geometric frustration in ordered lattices of plasmonic nanoelements.
    Conde-Rubio A; Fraile Rodríguez A; Espinha A; Mihi A; Pérez-Murano F; Batlle X; Labarta A
    Sci Rep; 2019 Mar; 9(1):3529. PubMed ID: 30837626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Geometric frustration in a hexagonal lattice of plasmonic nanoelements.
    Conde-Rubio A; Rodríguez AF; Borrisé X; Perez-Murano F; Batlle X; Labarta A
    Opt Express; 2018 Aug; 26(16):20211-20224. PubMed ID: 30119347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plasmonic Surface Lattice Resonances: Theory and Computation.
    Cherqui C; Bourgeois MR; Wang D; Schatz GC
    Acc Chem Res; 2019 Sep; 52(9):2548-2558. PubMed ID: 31465203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating Light-Matter Interactions in Plasmonic Nanoparticle Lattices.
    Wang D; Guan J; Hu J; Bourgeois MR; Odom TW
    Acc Chem Res; 2019 Nov; 52(11):2997-3007. PubMed ID: 31596570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal-insulator-metal plasmonic absorbers: influence of lattice.
    Chen Y; Dai J; Yan M; Qiu M
    Opt Express; 2014 Dec; 22(25):30807-14. PubMed ID: 25607029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffractive dipolar coupling in non-Bravais plasmonic lattices.
    Becerril D; Vázquez O; Piccotti D; Sandoval EM; Cesca T; Mattei G; Noguez C; Pirruccio G
    Nanoscale Adv; 2020 Mar; 2(3):1261-1268. PubMed ID: 36133042
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Light Localization and Magneto-Optic Enhancement in Ni Antidot Arrays.
    Rollinger M; Thielen P; Melander E; Östman E; Kapaklis V; Obry B; Cinchetti M; García-Martín A; Aeschlimann M; Papaioannou ET
    Nano Lett; 2016 Apr; 16(4):2432-8. PubMed ID: 27018661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid plasmonic lattices with tunable magneto-optical activity.
    Kataja M; Pourjamal S; Maccaferri N; Vavassori P; Hakala TK; Huttunen MJ; Törmä P; van Dijken S
    Opt Express; 2016 Feb; 24(4):3652-62. PubMed ID: 26907022
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generalized analytical model based on harmonic coupling for hybrid plasmonic modes: comparison with numerical and experimental results.
    Sarkar M; Bryche JF; Moreau J; Besbes M; Barbillon G; Bartenlian B; Canva M
    Opt Express; 2015 Oct; 23(21):27376-90. PubMed ID: 26480400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coscinodiscus diatom inspired bi-layered photonic structures with near-perfect absorptance Part II: hexagonal vs. square lattice-based structures.
    Hassan MM; Zaman S; Hasanuzzaman M; Baten MZ
    Opt Express; 2022 Aug; 30(16):29352-29364. PubMed ID: 36299111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Harnessing Geometric Frustration to Form Band Gaps in Acoustic Channel Lattices.
    Wang P; Zheng Y; Fernandes MC; Sun Y; Xu K; Sun S; Kang SH; Tournat V; Bertoldi K
    Phys Rev Lett; 2017 Feb; 118(8):084302. PubMed ID: 28282189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular spin resonance in the geometrically frustrated magnet MgCr2O4 by inelastic neutron scattering.
    Tomiyasu K; Suzuki H; Toki M; Itoh S; Matsuura M; Aso N; Yamada K
    Phys Rev Lett; 2008 Oct; 101(17):177401. PubMed ID: 18999783
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Lattice Coupling of Multipole Plasmon Modes and Near-Field Enhancement in Closely Spaced Gold Nanorod Arrays.
    Huang Y; Zhang X; Ringe E; Hou M; Ma L; Zhang Z
    Sci Rep; 2016 Mar; 6():23159. PubMed ID: 26983501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Film-Nanoctahedron Assembly Route to Plasmonic Metamaterial Absorbers at Visible Frequencies.
    Zhang H; Guan C; Luo J; Yuan Y; Song N; Zhang Y; Fang J; Liu H
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20241-20248. PubMed ID: 31083897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface lattice resonances and magneto-optical response in magnetic nanoparticle arrays.
    Kataja M; Hakala TK; Julku A; Huttunen MJ; van Dijken S; Törmä P
    Nat Commun; 2015 May; 6():7072. PubMed ID: 25947368
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Anomalous near-perfect extraordinary optical absorption on subwavelength thin metal film grating.
    Dai L; Jiang C
    Opt Express; 2009 Oct; 17(22):20502-14. PubMed ID: 19997279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alkali Transition-Metal Molybdates: A Stepwise Approach to Geometrically Frustrated Systems.
    Smith Pellizzeri TM; McMillen CD; Kolis JW
    Chemistry; 2020 Jan; 26(3):597-600. PubMed ID: 31560806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasmonic modes of extreme subwavelength nanocavities.
    Petschulat J; Helgert C; Steinert M; Bergner N; Rockstuhl C; Lederer F; Pertsch T; Tünnermann A; Kley EB
    Opt Lett; 2010 Aug; 35(16):2693-5. PubMed ID: 20717426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Geometric frustration in buckled colloidal monolayers.
    Han Y; Shokef Y; Alsayed AM; Yunker P; Lubensky TC; Yodh AG
    Nature; 2008 Dec; 456(7224):898-903. PubMed ID: 19092926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.