These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 30837626)

  • 21. Gold Nanoparticle Plasmonic Superlattices as Surface-Enhanced Raman Spectroscopy Substrates.
    Matricardi C; Hanske C; Garcia-Pomar JL; Langer J; Mihi A; Liz-Marzán LM
    ACS Nano; 2018 Aug; 12(8):8531-8539. PubMed ID: 30106555
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong coupling of light to flat metals via a buried nanovoid lattice: the interplay of localized and free plasmons.
    Teperik TV; Popov VV; García de Abajo FJ; Abdelsalam M; Bartlett PN; Kelf TA; Sugawara Y; Baumberg JJ
    Opt Express; 2006 Mar; 14(5):1965-72. PubMed ID: 19503527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Near-field asymmetries in plasmonic resonators.
    Aksyuk V; Lahiri B; Holland G; Centrone A
    Nanoscale; 2015 Feb; 7(8):3634-44. PubMed ID: 25636125
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Emergent excitations in a geometrically frustrated magnet.
    Lee SH; Broholm C; Ratcliff W; Gasparovic G; Huang Q; Kim TH; Cheong SW
    Nature; 2002 Aug; 418(6900):856-8. PubMed ID: 12192404
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Quantum Monte Carlo Simulation of Frustrated Kondo Lattice Models.
    Sato T; Assaad FF; Grover T
    Phys Rev Lett; 2018 Mar; 120(10):107201. PubMed ID: 29570313
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Analysis of the Limits of the Near-Field Produced by Nanoparticle Arrays.
    Manjavacas A; Zundel L; Sanders S
    ACS Nano; 2019 Sep; 13(9):10682-10693. PubMed ID: 31487460
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoring structure, spacing, and local dielectric sensitivity for plasmonic resonances in Fano resonant square lattices.
    Forcherio GT; Blake P; DeJarnette D; Roper DK
    Opt Express; 2014 Jul; 22(15):17791-803. PubMed ID: 25089400
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel excitations near quantum criticality in geometrically frustrated antiferromagnet CsFeCl
    Hayashida S; Matsumoto M; Hagihala M; Kurita N; Tanaka H; Itoh S; Hong T; Soda M; Uwatoko Y; Masuda T
    Sci Adv; 2019 Oct; 5(10):eaaw5639. PubMed ID: 31667340
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Plasmonic resonances in diffractive arrays of gold nanoantennas: near and far field effects.
    Nikitin AG; Kabashin AV; Dallaporta H
    Opt Express; 2012 Dec; 20(25):27941-52. PubMed ID: 23262740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Broadband infrared plasmonic metamaterial absorber with multipronged absorption mechanisms.
    Fann CH; Zhang J; ElKabbash M; Donaldson WR; Michael Campbell E; Guo C
    Opt Express; 2019 Sep; 27(20):27917-27926. PubMed ID: 31684552
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing plasmonic nanoantennas via coordinated multiple coupling.
    Lin L; Zheng Y
    Sci Rep; 2015 Oct; 5():14788. PubMed ID: 26423015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles.
    Dallapiccola R; Gopinath A; Stellacci F; Dal Negro L
    Opt Express; 2008 Apr; 16(8):5544-55. PubMed ID: 18542657
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Extraordinary Effects in Quasi-Periodic Gold Nanocavities: Enhanced Transmission and Polarization Control of Cavity Modes.
    Dhama R; Caligiuri V; Petti L; Rashed AR; Rippa M; Lento R; Termine R; Caglayan H; De Luca A
    ACS Nano; 2018 Jan; 12(1):504-512. PubMed ID: 29178780
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantum electric-dipole liquid on a triangular lattice.
    Shen SP; Wu JC; Song JD; Sun XF; Yang YF; Chai YS; Shang DS; Wang SG; Scott JF; Sun Y
    Nat Commun; 2016 Feb; 7():10569. PubMed ID: 26843363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method.
    Liu GQ; Hu Y; Liu ZQ; Chen YH; Cai ZJ; Zhang XN; Huang K
    Phys Chem Chem Phys; 2014 Mar; 16(9):4320-8. PubMed ID: 24452786
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Subradiant Dipolar Interactions in Plasmonic Nanoring Resonator Array for Integrated Label-Free Biosensing.
    Liang Y; Zhang H; Zhu W; Agrawal A; Lezec H; Li L; Peng W; Zou Y; Lu Y; Xu T
    ACS Sens; 2017 Dec; 2(12):1796-1804. PubMed ID: 29139285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Symmetry-breaking induced magnetic Fano resonances in densely packed arrays of symmetric nanotrimers.
    Wang N; Zeisberger M; Huebner U; Giannini V; Schmidt MA
    Sci Rep; 2019 Feb; 9(1):2873. PubMed ID: 30814665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Geometric frustration in compositionally modulated ferroelectrics.
    Choudhury N; Walizer L; Lisenkov S; Bellaiche L
    Nature; 2011 Feb; 470(7335):513-7. PubMed ID: 21307851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-deflecting plasmonic lattice solitons and surface modes in chirped plasmonic arrays.
    Li C; Cui R; Ye F; Kartashov YV; Torner L; Chen X
    Opt Lett; 2015 Mar; 40(6):898-901. PubMed ID: 25768141
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.