These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 30837675)

  • 1. Magnetic field-induced rubber-like behavior in Ni-Mn-Ga particles/polymer composite.
    Sratong-On P; Chernenko VA; Feuchtwanger J; Hosoda H
    Sci Rep; 2019 Mar; 9(1):3443. PubMed ID: 30837675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Framework of magnetostrain responsive Ni-Mn-Ga microparticles driving magnetic field induced out-of-plane actuation of laminate composite.
    Han D; Chiu WT; Tahara M; Chernenko V; Lanceros-Mendez S; Hosoda H
    Sci Rep; 2023 May; 13(1):7160. PubMed ID: 37137959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant magnetic-field-induced strains in polycrystalline Ni-Mn-Ga foams.
    Chmielus M; Zhang XX; Witherspoon C; Dunand DC; Müllner P
    Nat Mater; 2009 Nov; 8(11):863-6. PubMed ID: 19749769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size effects on magnetic actuation in Ni-Mn-Ga shape-memory alloys.
    Dunand DC; Müllner P
    Adv Mater; 2011 Jan; 23(2):216-32. PubMed ID: 20957766
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetic field-induced strain and magnetoelectric effects in sandwich composite of ferromagnetic shape memory Ni-Mn-Ga crystal and piezoelectric PVDF polymer.
    Zeng M; Or SW; Chan HL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Oct; 57(10):2147-53. PubMed ID: 20889398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stress-assisted large magnetic-field-induced strain in single-variant Co-Ni-Ga ferromagnetic shape memory alloy.
    Morito H; Oikawa K; Fujita A; Fukamichi K; Kainuma R; Ishida K
    J Phys Condens Matter; 2009 Jun; 21(25):256002. PubMed ID: 21828446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing magnetoplasticity in polycrystalline Ni-Mn-Ga by reducing internal constraints through porosity.
    Boonyongmaneerat Y; Chmielus M; Dunand DC; Müllner P
    Phys Rev Lett; 2007 Dec; 99(24):247201. PubMed ID: 18233476
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microstructure and Magnetic Field-Induced Strain of a Ni-Mn-Ga-Co-Gd High-Entropy Alloy.
    Ju J; Hu L; Bao C; Shuai L; Yan C; Wang Z
    Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation twinning of Ni-Mn-Ga characterized with temperature-controlled atomic force microscopy.
    Reinhold M; Watson C; Knowlton WB; Müllner P
    J Appl Phys; 2010 Jun; 107(11):113501. PubMed ID: 20589105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Magnetostrain in a <0 0 1>A-Textured Ni44.5Co4.9Mn37.5In13.1 Alloy through Superelastic Training.
    Guo L; Li Z; Chen J; Yang B; Yan H; Zhao X; Esling C; Zuo L
    Materials (Basel); 2022 Mar; 15(6):. PubMed ID: 35329524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Following the Martensitic Configuration Footprints in the Transition Route of Ni-Mn-Ga Magnetic Shape Memory Films: Insight into the Role of Twin Boundaries and Interfaces.
    Takhsha Ghahfarokhi M; Nasi L; Casoli F; Fabbrici S; Trevisi G; Cabassi R; Albertini F
    Materials (Basel); 2020 May; 13(9):. PubMed ID: 32370074
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Low-Cost Ni-Mn-Ti-B High-Temperature Shape Memory Alloy with Extraordinary Functional Properties.
    Li S; Cong D; Xiong W; Chen Z; Zhang X; Nie Z; Li S; Li R; Wang Y; Cao Y; Ren Y; Wang Y
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31870-31879. PubMed ID: 34210125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating functional magnetic materials on supercomputers.
    Gruner ME; Entel P
    J Phys Condens Matter; 2009 Jul; 21(29):293201. PubMed ID: 21828528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving giant magnetically induced reorientation of martensitic variants in magnetic shape-memory Ni-Mn-Ga Films by microstructure engineering.
    Ranzieri P; Campanini M; Fabbrici S; Nasi L; Casoli F; Cabassi R; Buffagni E; Grillo V; Magén C; Celegato F; Barrera G; Tiberto P; Albertini F
    Adv Mater; 2015 Aug; 27(32):4760-6. PubMed ID: 26180008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystallographic Characterization on Polycrystalline Ni-Mn-Ga Alloys with Strong Preferred Orientation.
    Li Z; Yang B; Zou N; Zhang Y; Esling C; Gan W; Zhao X; Zuo L
    Materials (Basel); 2017 Apr; 10(5):. PubMed ID: 28772826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of Annealing on the Damping Behavior of Ni-Cu-Mn-Ga Ferromagnetic Shape Memory Alloys.
    Liao X; Xu X; Gao L; Khan MT; Hao C; Cheng F; He Y; Wang Y
    Materials (Basel); 2020 Jan; 13(2):. PubMed ID: 31963886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.
    Sathe VG; Dubey A; Banik S; Barman SR; Olivi L
    J Phys Condens Matter; 2013 Jan; 25(4):046001. PubMed ID: 23238326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transformation behavior of Ni-Mn-Ga in the low-temperature limit.
    Pérez-Landazábal JI; Recarte V; Sánchez-Alarcos V; Chernenko VA; Barandiarán JM; Lázpita P; Rodriguez Fernández J; Righi L
    J Phys Condens Matter; 2012 Jul; 24(27):276004. PubMed ID: 22713607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micromechanical model for the ferromagnetic shape memory alloy-epoxy resin composite considering variant reorientation and magneto-mechanical coupling.
    Xue L; Mu H; Sun Y
    J Mech Behav Biomed Mater; 2021 May; 117():104396. PubMed ID: 33636679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic properties and electronic structure of Mn-Ni-Ga magnetic shape memory alloys.
    D'Souza SW; Roy T; Barman SR; Chakrabarti A
    J Phys Condens Matter; 2014 Dec; 26(50):506001. PubMed ID: 25419566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.