These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 3083772)
1. Method for determining the temporal response of microbial phosphate transport affinity. Molot LA; Brown EJ Appl Environ Microbiol; 1986 Mar; 51(3):524-31. PubMed ID: 3083772 [TBL] [Abstract][Full Text] [Related]
2. Phosphate-limited continuous culture of Rhodotorula rubra: kinetics of transport, leakage, and growth. Robertson BR; Button DK J Bacteriol; 1979 Jun; 138(3):884-95. PubMed ID: 37231 [TBL] [Abstract][Full Text] [Related]
3. Biotransformation of benzo[a]pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Warshawsky D; Cody T; Radike M; Reilman R; Schumann B; LaDow K; Schneider J Chem Biol Interact; 1995 Jul; 97(2):131-48. PubMed ID: 7606812 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus-limited growth of a green alga and a blue-green alga. Lang DS; Brown EJ Appl Environ Microbiol; 1981 Dec; 42(6):1002-9. PubMed ID: 16345896 [TBL] [Abstract][Full Text] [Related]
5. Homology between nucleic acids of blue-green algae and chloroplasts of Euglena gracilis. Pigott GH; Carr NG Science; 1972 Mar; 175(4027):1259-61. PubMed ID: 4621951 [TBL] [Abstract][Full Text] [Related]
6. Phosphate transport and arsenate resistance in the cyanobacterium Anabaena variabilis. Thiel T J Bacteriol; 1988 Mar; 170(3):1143-7. PubMed ID: 3125150 [TBL] [Abstract][Full Text] [Related]
7. Temperature dependence of the apparent affinity and the maximum velocity of the membrane-bound monosaccharide transport system in the yeast Rhodotorula gracilis. Heller KB; Höfer M Biochim Biophys Acta; 1978 Dec; 514(1):172-7. PubMed ID: 568938 [TBL] [Abstract][Full Text] [Related]
8. The effects of interspecific interactions between bloom forming cyanobacteria and Scenedesmus quadricauda (chlorophyta) on their photophysiology. Kovács AW; Tóth VR; Pálffy K Acta Biol Hung; 2018 Jun; 69(2):210-223. PubMed ID: 29888666 [TBL] [Abstract][Full Text] [Related]
9. Proceedings: The effect of nystatin on the monosaccharide transport system in Rhodotorula gracilis. Heller KB; Höfer M Hoppe Seylers Z Physiol Chem; 1974 Oct; 355(10):1203-4. PubMed ID: 4477746 [No Abstract] [Full Text] [Related]
10. Continuous culture of Rhodotorula rubra: kinetics of phosphate-arsenate uptake, inhibition, and phosphate-limited growth. Button DK; Dunker SS; Morse ML J Bacteriol; 1973 Feb; 113(2):599-611. PubMed ID: 4690960 [TBL] [Abstract][Full Text] [Related]
11. Transport of L-glucose by Rhodotorula glutinis. Pinkerton MD; Ritchie CK; Griffin CC Biochimie; 1988 Feb; 70(2):183-5. PubMed ID: 3134941 [TBL] [Abstract][Full Text] [Related]
12. Variable H+/substrate stoicheiometries in Rhodotorula gracilis are caused by a pH-dependent protonation of the carrier(s). Hauer R; Höfer M Biochem J; 1982 Nov; 208(2):459-64. PubMed ID: 6297468 [TBL] [Abstract][Full Text] [Related]
13. Evidence for a proton/sugar symport in the yeast Rhodotorula gracilis (glutinis). Höfer M; Misra PC Biochem J; 1978 Apr; 172(1):15-22. PubMed ID: 26338 [TBL] [Abstract][Full Text] [Related]
14. The effect of naphthalene-acetic acid on biomass productivity and chlorophyll content of green algae, coccolithophore, diatom, and cyanobacterium cultures. Hunt RW; Chinnasamy S; Das KC Appl Biochem Biotechnol; 2011 Aug; 164(8):1350-65. PubMed ID: 21431321 [TBL] [Abstract][Full Text] [Related]
15. The effect of nystatin on active transport in Rhodotorula glutinis (gracilis) is restricted to the plasma membrane. von Hedenström M; Höfer M Biochim Biophys Acta; 1979 Jul; 555(1):169-74. PubMed ID: 573138 [TBL] [Abstract][Full Text] [Related]
16. Influence of culture pH and phosphate on synchrony of Euglena gracilis. Cook JR Exp Cell Res; 1971 Nov; 69(1):207-11. PubMed ID: 5001383 [No Abstract] [Full Text] [Related]
17. Transport and metabolism of 2-deoxy-D-glucose by Rhodotorula glutinis. Woost PG; Griffin CC Biochim Biophys Acta; 1984 Apr; 803(4):284-9. PubMed ID: 6422996 [TBL] [Abstract][Full Text] [Related]
18. Nutrient transport in microalgae. Raven JA Adv Microb Physiol; 1980; 21():47-226. PubMed ID: 6778091 [No Abstract] [Full Text] [Related]
19. An energy-linked proton-extrusion across the cell membrane Rhodotorula gracilis. Misra PC; Höfer M FEBS Lett; 1975 Mar; 52(1):95-9. PubMed ID: 235473 [No Abstract] [Full Text] [Related]
20. The cell content and secretion of water-soluble vitamins by several freshwater algae. Aaronson S; Dhawale SW; Patni NJ; DeAngelis B; Frank O; Baker H Arch Microbiol; 1977 Feb; 112(1):57-9. PubMed ID: 402897 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]