BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 30837824)

  • 1. Haptic Error Modulation Outperforms Visual Error Amplification When Learning a Modified Gait Pattern.
    Marchal-Crespo L; Tsangaridis P; Obwegeser D; Maggioni S; Riener R
    Front Neurosci; 2019; 13():61. PubMed ID: 30837824
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Promoting Motor Variability During Robotic Assistance Enhances Motor Learning of Dynamic Tasks.
    Özen Ö; Buetler KA; Marchal-Crespo L
    Front Neurosci; 2020; 14():600059. PubMed ID: 33603642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Haptic Guidance and Haptic Error Amplification in a Virtual Surgical Robotic Training Environment.
    Oquendo YA; Coad MM; Wren SM; Lendvay TS; Nisky I; Jarc AM; Okamura AM; Chua Z
    IEEE Trans Haptics; 2024 Jan; PP():. PubMed ID: 38194379
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of visual distraction and auditory feedback on patient effort during robot-assisted movement training after stroke.
    Secoli R; Milot MH; Rosati G; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2011 Apr; 8():21. PubMed ID: 21513561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Music meets robotics: a prospective randomized study on motivation during robot aided therapy.
    Baur K; Speth F; Nagle A; Riener R; Klamroth-Marganska V
    J Neuroeng Rehabil; 2018 Aug; 15(1):79. PubMed ID: 30115082
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adaptation and post-adaptation effects of haptic forces on locomotion in healthy young adults.
    Sorrento GU; Archambault PS; Fung J
    J Neuroeng Rehabil; 2018 Mar; 15(1):20. PubMed ID: 29534731
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and Validation of a Lower-Limb Haptic Rehabilitation Robot.
    Dawson-Elli AR; Adamczyk PG
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1584-1594. PubMed ID: 32634097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Motor Learning in Robot-Based Haptic Dyads: A Review.
    Waters EL; Johnson MJ
    IEEE Trans Haptics; 2024 Mar; PP():. PubMed ID: 38502611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociating haptic feedback from physical assistance does not improve motor performance.
    Ivanova E; Pena-Perez N; Eden J; Yip Y; Burdet E
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083127
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bill-EVR: An Embodied Virtual Reality Framework for Reward-and-Error-Based Motor Rehab-Learning.
    Nardi F; Haar S; Faisal AA
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. It's how you get there: walking down a virtual alley activates premotor and parietal areas.
    Wagner J; Solis-Escalante T; Scherer R; Neuper C; Müller-Putz G
    Front Hum Neurosci; 2014; 8():93. PubMed ID: 24611043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dyad motor learning in a wrist-robotic environment: Learning together is better than learning alone.
    Winter LV; Panzer S; Konczak J
    Hum Mov Sci; 2024 Feb; 93():103172. PubMed ID: 38168644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cognitive and motor cortex activation during robot-assisted multi-sensory interactive motor rehabilitation training: An fNIRS based pilot study.
    Zheng J; Ma Q; He W; Huang Y; Shi P; Li S; Yu H
    Front Hum Neurosci; 2023; 17():1089276. PubMed ID: 36845877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparing end-effector position and joint angle feedback for online robotic limb tracking.
    Pinardi M; Noccaro A; Raiano L; Formica D; Di Pino G
    PLoS One; 2023; 18(6):e0286566. PubMed ID: 37289675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seeing does not mean processing: where we look and the visual information we rely on change independently as we learn a novel walking task.
    Cates A; Gordon KE
    Exp Brain Res; 2023 Oct; 241(10):2535-2546. PubMed ID: 37704876
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing skill learning with dual-user haptic feedback: insights from a task-specific approach.
    Zhang Y; Wang O; Wang Y; Tavakoli M; Zheng B
    Front Robot AI; 2023; 10():1286282. PubMed ID: 38077453
    [No Abstract]   [Full Text] [Related]  

  • 18. Bayesian Estimation of Potential Performance Improvement Elicited by Robot-Guided Training.
    Takai A; Lisi G; Noda T; Teramae T; Imamizu H; Morimoto J
    Front Neurosci; 2021; 15():704402. PubMed ID: 34744603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neurorehabilitation Method for Preventing the Collapse of Internal Model: Verification of Unconscious Motor Change Caused by Implicit Error Involved in Multimodal Sensory FBs(Feedbacks).
    Toriya S; Yang X; Nishimura K; Yasuda K; Iwata H
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-6. PubMed ID: 38083626
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rest the Brain to Learn New Gait Patterns after Stroke.
    Krishnan C; Augenstein TE; Claflin ES; Hemsley CR; Washabaugh EP; Ranganathan R
    medRxiv; 2024 Apr; ():. PubMed ID: 38633786
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.