These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

317 related articles for article (PubMed ID: 30837824)

  • 21. A single robotic session that guides or increases movement error in survivors post-chronic stroke: which intervention is best to boost the learning of a timing task?
    Bouchard AE; Corriveau H; Milot MH
    Disabil Rehabil; 2017 Aug; 39(16):1607-1614. PubMed ID: 27415452
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effect of haptic guidance and visual feedback on learning a complex tennis task.
    Marchal-Crespo L; van Raai M; Rauter G; Wolf P; Riener R
    Exp Brain Res; 2013 Nov; 231(3):277-91. PubMed ID: 24013789
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of haptic guidance in learning a novel visuomotor task.
    van Asseldonk EH; Wessels M; Stienen AH; van der Helm FC; van der Kooij H
    J Physiol Paris; 2009; 103(3-5):276-85. PubMed ID: 19665551
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct Comparisons of Upper-Limb Motor Learning Performance Among Three Types of Haptic Guidance With Non-Assisted Condition in Spiral Drawing Task.
    Muramatsu H; Itaguchi Y; Yamada C; Yoshizawa H; Katsura S
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():2545-2552. PubMed ID: 38995712
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Robot-Assisted Proprioceptive Training with Added Vibro-Tactile Feedback Enhances Somatosensory and Motor Performance.
    Cuppone AV; Squeri V; Semprini M; Masia L; Konczak J
    PLoS One; 2016; 11(10):e0164511. PubMed ID: 27727321
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skill transfer from symmetric and asymmetric bimanual training using a robotic system to single limb performance.
    Trlep M; Mihelj M; Munih M
    J Neuroeng Rehabil; 2012 Jul; 9():43. PubMed ID: 22805223
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Motor learning with fading and growing haptic guidance.
    Heuer H; Lüttgen J
    Exp Brain Res; 2014 Jul; 232(7):2229-42. PubMed ID: 24736860
    [TBL] [Abstract][Full Text] [Related]  

  • 28. It Pays to Go Off-Track: Practicing with Error-Augmenting Haptic Feedback Facilitates Learning of a Curve-Tracing Task.
    Williams CK; Tremblay L; Carnahan H
    Front Psychol; 2016; 7():2010. PubMed ID: 28082937
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of robotic performance-based error-augmentation versus error-reduction training on the gait of healthy individuals.
    Kao PC; Srivastava S; Agrawal SK; Scholz JP
    Gait Posture; 2013 Jan; 37(1):113-20. PubMed ID: 22832470
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of robotically modulating kinematic variability on motor skill learning and motivation.
    Duarte JE; Reinkensmeyer DJ
    J Neurophysiol; 2015 Apr; 113(7):2682-91. PubMed ID: 25673732
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An fMRI pilot study to evaluate brain activation associated with locomotion adaptation.
    Marchal-Crespo L; Hollnagel C; Brügger M; Kollias S; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975371. PubMed ID: 22275575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hiding Assistive Robots During Training in Immersive VR Does Not Affect Users' Motivation, Presence, Embodiment, Performance, Nor Visual Attention.
    Wenk N; Jordi MV; Buetler KA; Marchal-Crespo L
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():390-399. PubMed ID: 35085087
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel velocity estimation for symmetric and asymmetric self-paced treadmill training.
    Canete S; Jacobs DA
    J Neuroeng Rehabil; 2021 Feb; 18(1):27. PubMed ID: 33546729
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can Lokomat therapy with children and adolescents be improved? An adaptive clinical pilot trial comparing Guidance force, Path control, and FreeD.
    Aurich-Schuler T; Grob F; van Hedel HJA; Labruyère R
    J Neuroeng Rehabil; 2017 Jul; 14(1):76. PubMed ID: 28705170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interlimb transfer of motor skill learning during walking: No evidence for asymmetric transfer.
    Krishnan C; Ranganathan R; Tetarbe M
    Gait Posture; 2017 Jul; 56():24-30. PubMed ID: 28482202
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Haptic guidance can enhance motor learning of a steering task.
    Marchal Crespo L; Reinkensmeyer DJ
    J Mot Behav; 2008 Nov; 40(6):545-56. PubMed ID: 18980907
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Walking with robot-generated haptic forces in a virtual environment: a new approach to analyze lower limb coordination.
    Sorrento GU; Archambault PS; Fung J
    J Neuroeng Rehabil; 2021 Sep; 18(1):136. PubMed ID: 34503526
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effect of haptic guidance, aging, and initial skill level on motor learning of a steering task.
    Marchal-Crespo L; McHughen S; Cramer SC; Reinkensmeyer DJ
    Exp Brain Res; 2010 Mar; 201(2):209-20. PubMed ID: 19820920
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Combined virtual reality and haptic robotics induce space and movement invariant sensorimotor adaptation.
    Wilf M; Cerra Cheraka M; Jeanneret M; Ott R; Perrin H; Crottaz-Herbette S; Serino A
    Neuropsychologia; 2021 Jan; 150():107692. PubMed ID: 33232695
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhancing touch sensibility by sensory retraining in a sensory discrimination task
    Villar Ortega E; Aksöz EA; Buetler KA; Marchal-Crespo L
    Front Rehabil Sci; 2022; 3():929431. PubMed ID: 36189030
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.