These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 30837824)

  • 41. Adaptation and post-adaptation effects of haptic forces on locomotion in healthy young adults.
    Sorrento GU; Archambault PS; Fung J
    J Neuroeng Rehabil; 2018 Mar; 15(1):20. PubMed ID: 29534731
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Robotic guidance benefits the learning of dynamic, but not of spatial movement characteristics.
    Lüttgen J; Heuer H
    Exp Brain Res; 2012 Oct; 222(1-2):1-9. PubMed ID: 22836521
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Design and Validation of a Lower-Limb Haptic Rehabilitation Robot.
    Dawson-Elli AR; Adamczyk PG
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jul; 28(7):1584-1594. PubMed ID: 32634097
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Breaking it down is better: haptic decomposition of complex movements aids in robot-assisted motor learning.
    Klein J; Spencer SJ; Reinkensmeyer DJ
    IEEE Trans Neural Syst Rehabil Eng; 2012 May; 20(3):268-75. PubMed ID: 22531825
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Comparison of visual and haptic feedback during training of lower extremities.
    Koritnik T; Koenig A; Bajd T; Riener R; Munih M
    Gait Posture; 2010 Oct; 32(4):540-6. PubMed ID: 20727763
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of task-related continuous auditory feedback during learning of tracking motion exercises.
    Rosati G; Oscari F; Spagnol S; Avanzini F; Masiero S
    J Neuroeng Rehabil; 2012 Oct; 9():79. PubMed ID: 23046683
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Force field adaptation can be learned using vision in the absence of proprioceptive error.
    Melendez-Calderon A; Masia L; Gassert R; Sandini G; Burdet E
    IEEE Trans Neural Syst Rehabil Eng; 2011 Jun; 19(3):298-306. PubMed ID: 21652280
    [TBL] [Abstract][Full Text] [Related]  

  • 48. OPTIMAL practice conditions enhance the benefits of gradually increasing error opportunities on retention of a stepping sequence task.
    Levac D; Driscoll K; Galvez J; Mercado K; O'Neil L
    Hum Mov Sci; 2017 Dec; 56(Pt B):129-138. PubMed ID: 29128736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Motor slacking during resisted treadmill walking: Can visual feedback of kinematics reduce this behavior?
    Washabaugh EP; Cubillos LH; Nelson AC; Cargile BT; Claflin ES; Krishnan C
    Gait Posture; 2021 Oct; 90():334-339. PubMed ID: 34564007
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Let the force guide you: a performance-based adaptive algorithm for postural training using haptic feedback.
    Agarwal R; Hussain A; Skm V; Campolo D
    Front Hum Neurosci; 2022; 16():968669. PubMed ID: 36504631
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Self-selected speed gait training in Parkinson's disease: robot-assisted gait training with virtual reality versus gait training on the ground.
    Fundarò C; Maestri R; Ferriero G; Chimento P; Taveggia G; Casale R
    Eur J Phys Rehabil Med; 2019 Aug; 55(4):456-462. PubMed ID: 30370751
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Assessing walking ability using a robotic gait trainer: opportunities and limitations of assist-as-needed control in spinal cord injury.
    Maggioni S; Lünenburger L; Riener R; Curt A; Bolliger M; Melendez-Calderon A
    J Neuroeng Rehabil; 2023 Sep; 20(1):121. PubMed ID: 37735690
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effect of progressive visual error amplification on human motor adaptation.
    Sung C; O'Malley MK
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975399. PubMed ID: 22275602
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Motor and psychosocial impact of robot-assisted gait training in a real-world rehabilitation setting: A pilot study.
    Fundarò C; Giardini A; Maestri R; Traversoni S; Bartolo M; Casale R
    PLoS One; 2018; 13(2):e0191894. PubMed ID: 29444172
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Movement Strategy Discovery during Training via Haptic Guidance.
    Gibo TL; Abbink DA
    IEEE Trans Haptics; 2016; 9(2):243-54. PubMed ID: 26766379
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of complementary auditory feedback in robot-assisted lower extremity motor adaptation.
    Zanotto D; Rosati G; Spagnol S; Stegall P; Agrawal SK
    IEEE Trans Neural Syst Rehabil Eng; 2013 Sep; 21(5):775-86. PubMed ID: 23529102
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review.
    van der Meijden OA; Schijven MP
    Surg Endosc; 2009 Jun; 23(6):1180-90. PubMed ID: 19118414
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Robotic guidance induces long-lasting changes in the movement pattern of a novel sport-specific motor task.
    Kümmel J; Kramer A; Gruber M
    Hum Mov Sci; 2014 Dec; 38():23-33. PubMed ID: 25238621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Motor Learning in Robot-Based Haptic Dyads: A Review.
    Waters EL; Johnson MJ
    IEEE Trans Haptics; 2024 Mar; PP():. PubMed ID: 38502611
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Terminal feedback outperforms concurrent visual, auditory, and haptic feedback in learning a complex rowing-type task.
    Sigrist R; Rauter G; Riener R; Wolf P
    J Mot Behav; 2013; 45(6):455-72. PubMed ID: 24006910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.