BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 30837996)

  • 1. Genome-Wide CRISPR Screening Identifies JAK1 Deficiency as a Mechanism of T-Cell Resistance.
    Han P; Dai Q; Fan L; Lin H; Zhang X; Li F; Yang X
    Front Immunol; 2019; 10():251. PubMed ID: 30837996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. USP22 deficiency in melanoma mediates resistance to T cells through IFNγ-JAK1-STAT1 signal axis.
    Li M; Xu Y; Liang J; Lin H; Qi X; Li F; Han P; Gao Y; Yang X
    Mol Ther; 2021 Jun; 29(6):2108-2120. PubMed ID: 33601053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering T Cells Using CRISPR/Cas9 for Cancer Therapy.
    Zhang X; Cheng C; Sun W; Wang H
    Methods Mol Biol; 2020; 2115():419-433. PubMed ID: 32006414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Natural Killer Cells Suppress T Cell-Associated Tumor Immune Evasion.
    Freeman AJ; Vervoort SJ; Ramsbottom KM; Kelly MJ; Michie J; Pijpers L; Johnstone RW; Kearney CJ; Oliaro J
    Cell Rep; 2019 Sep; 28(11):2784-2794.e5. PubMed ID: 31509742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CRISPR/Cas9 and CAR-T cell, collaboration of two revolutionary technologies in cancer immunotherapy, an instruction for successful cancer treatment.
    Mollanoori H; Shahraki H; Rahmati Y; Teimourian S
    Hum Immunol; 2018 Dec; 79(12):876-882. PubMed ID: 30261221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Critical cancer vulnerabilities identified by unbiased CRISPR/Cas9 screens inform on efficient cancer Immunotherapy.
    Potts MA; McDonald JA; Sutherland KD; Herold MJ
    Eur J Immunol; 2020 Dec; 50(12):1871-1884. PubMed ID: 33202035
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advancing chimeric antigen receptor T cell therapy with CRISPR/Cas9.
    Ren J; Zhao Y
    Protein Cell; 2017 Sep; 8(9):634-643. PubMed ID: 28434148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].
    Sun SJ; Huo JH; Geng ZJ; Sun XY; Fu XB
    Zhonghua Shao Shang Za Zhi; 2018 Apr; 34(4):253-256. PubMed ID: 29690746
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient CRISPR/Cas9 Gene Editing in Uncultured Naive Mouse T Cells for In Vivo Studies.
    Nüssing S; House IG; Kearney CJ; Chen AXY; Vervoort SJ; Beavis PA; Oliaro J; Johnstone RW; Trapani JA; Parish IA
    J Immunol; 2020 Apr; 204(8):2308-2315. PubMed ID: 32152070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CRISPR/Cas: From Tumor Gene Editing to T Cell-Based Immunotherapy of Cancer.
    Azangou-Khyavy M; Ghasemi M; Khanali J; Boroomand-Saboor M; Jamalkhah M; Soleimani M; Kiani J
    Front Immunol; 2020; 11():2062. PubMed ID: 33117331
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of Cancer-Specific Cytotoxic PD-1
    Lu S; Yang N; He J; Gong W; Lai Z; Xie L; Tao L; Xu C; Wang H; Zhang G; Cao H; Zhou C; Zhong L; Zhao Y
    J Biomed Nanotechnol; 2019 Mar; 15(3):593-601. PubMed ID: 31165703
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPR/Cas9 technology as a potent molecular tool for gene therapy.
    Karimian A; Azizian K; Parsian H; Rafieian S; Shafiei-Irannejad V; Kheyrollah M; Yousefi M; Majidinia M; Yousefi B
    J Cell Physiol; 2019 Aug; 234(8):12267-12277. PubMed ID: 30697727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification of essential genes for cancer immunotherapy.
    Patel SJ; Sanjana NE; Kishton RJ; Eidizadeh A; Vodnala SK; Cam M; Gartner JJ; Jia L; Steinberg SM; Yamamoto TN; Merchant AS; Mehta GU; Chichura A; Shalem O; Tran E; Eil R; Sukumar M; Guijarro EP; Day CP; Robbins P; Feldman S; Merlino G; Zhang F; Restifo NP
    Nature; 2017 Aug; 548(7669):537-542. PubMed ID: 28783722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CRISPR-Cas9 system: A new-fangled dawn in gene editing.
    Gupta D; Bhattacharjee O; Mandal D; Sen MK; Dey D; Dasgupta A; Kazi TA; Gupta R; Sinharoy S; Acharya K; Chattopadhyay D; Ravichandiran V; Roy S; Ghosh D
    Life Sci; 2019 Sep; 232():116636. PubMed ID: 31295471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR-Cas9 Targeting of PCSK9 in Human Hepatocytes In Vivo-Brief Report.
    Wang X; Raghavan A; Chen T; Qiao L; Zhang Y; Ding Q; Musunuru K
    Arterioscler Thromb Vasc Biol; 2016 May; 36(5):783-6. PubMed ID: 26941020
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR/Cas9 System and its Research Progress in Gene Therapy.
    Liu W; Yang C; Liu Y; Jiang G
    Anticancer Agents Med Chem; 2019; 19(16):1912-1919. PubMed ID: 31633477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide CRISPR Screens in Primary Human T Cells Reveal Key Regulators of Immune Function.
    Shifrut E; Carnevale J; Tobin V; Roth TL; Woo JM; Bui CT; Li PJ; Diolaiti ME; Ashworth A; Marson A
    Cell; 2018 Dec; 175(7):1958-1971.e15. PubMed ID: 30449619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR-Cas9 for cancer therapy: Opportunities and challenges.
    Chen M; Mao A; Xu M; Weng Q; Mao J; Ji J
    Cancer Lett; 2019 Apr; 447():48-55. PubMed ID: 30684591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 revitalizes adoptive T-cell therapy for cancer immunotherapy.
    Ghaffari S; Khalili N; Rezaei N
    J Exp Clin Cancer Res; 2021 Aug; 40(1):269. PubMed ID: 34446084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.