These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 30838793)

  • 1. Suitability of lattice Boltzmann inlet and outlet boundary conditions for simulating flow in image-derived vasculature.
    Feiger B; Vardhan M; Gounley J; Mortensen M; Nair P; Chaudhury R; Frakes D; Randles A
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3198. PubMed ID: 30838793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of inlet and outlet boundary conditions in image-based CFD modeling of aortic flow.
    Madhavan S; Kemmerling EMC
    Biomed Eng Online; 2018 May; 17(1):66. PubMed ID: 29843730
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Uncertainty quantification of the lattice Boltzmann method focussing on studies of human-scale vascular blood flow.
    McCullough JWS; Coveney PV
    Sci Rep; 2024 May; 14(1):11317. PubMed ID: 38760455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of blood flow in arteries with aneurysm: Lattice Boltzmann Approach (LBM).
    Afrouzi HH; Ahmadian M; Hosseini M; Arasteh H; Toghraie D; Rostami S
    Comput Methods Programs Biomed; 2020 Apr; 187():105312. PubMed ID: 31978870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mass-conserved volumetric lattice Boltzmann method for complex flows with willfully moving boundaries.
    Yu H; Chen X; Wang Z; Deep D; Lima E; Zhao Y; Teague SD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):063304. PubMed ID: 25019909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI-based computational hemodynamics in patients with aortic coarctation using the lattice Boltzmann methods: Clinical validation study.
    Mirzaee H; Henn T; Krause MJ; Goubergrits L; Schumann C; Neugebauer M; Kuehne T; Preusser T; Hennemuth A
    J Magn Reson Imaging; 2017 Jan; 45(1):139-146. PubMed ID: 27384018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of the lattice Boltzmann method to arterial flow simulation: investigation of boundary conditions for complex arterial geometries.
    Boyd J; Buick JM; Cosgrove JA; Stansell P
    Australas Phys Eng Sci Med; 2004 Dec; 27(4):207-12. PubMed ID: 15712588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative study of the discrete velocity and lattice Boltzmann methods for rarefied gas flows through irregular channels.
    Su W; Lindsay S; Liu H; Wu L
    Phys Rev E; 2017 Aug; 96(2-1):023309. PubMed ID: 28950559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of model boundary conditions on blood flow patterns in a patient specific stenotic right coronary artery.
    Liu B; Zheng J; Bach R; Tang D
    Biomed Eng Online; 2015; 14 Suppl 1(Suppl 1):S6. PubMed ID: 25602370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically scaled phantom phase contrast MRI compared to true-scale computational modeling of coronary artery flow.
    Beier S; Ormiston JA; Webster MW; Cater JE; Norris SE; Medrano-Gracia P; Young AA; Cowan BR
    J Magn Reson Imaging; 2016 Oct; 44(4):983-92. PubMed ID: 27042817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computational modeling of MR flow imaging by the lattice Boltzmann method and Bloch equation.
    Jurczuk K; Kretowski M; Bellanger JJ; Eliat PA; Saint-Jalmes H; Bézy-Wendling J
    Magn Reson Imaging; 2013 Sep; 31(7):1163-73. PubMed ID: 23711475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulations of time harmonic blood flow in the Mesenteric artery: comparing finite element and lattice Boltzmann methods.
    Axner L; Hoekstra AG; Jeays A; Lawford P; Hose R; Sloot PM
    Biomed Eng Online; 2009 Oct; 8():23. PubMed ID: 19799782
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved treatments for general boundary conditions in the lattice Boltzmann method for convection-diffusion and heat transfer processes.
    Chen Q; Zhang X; Zhang J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):033304. PubMed ID: 24125382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Choice of boundary condition for lattice-Boltzmann simulation of moderate-Reynolds-number flow in complex domains.
    Nash RW; Carver HB; Bernabeu MO; Hetherington J; Groen D; Krüger T; Coveney PV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):023303. PubMed ID: 25353601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional flow patterns in the feto-placental vasculature system of the mouse placenta.
    Shannon AT; Mirbod P
    Microvasc Res; 2017 May; 111():88-95. PubMed ID: 28111314
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainty quantification in coronary blood flow simulations: Impact of geometry, boundary conditions and blood viscosity.
    Sankaran S; Kim HJ; Choi G; Taylor CA
    J Biomech; 2016 Aug; 49(12):2540-7. PubMed ID: 26803339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of flat, parabolic and realistic steady flow inlet profiles on idealised and realistic stent graft fits through Abdominal Aortic Aneurysms (AAA).
    Morris L; Delassus P; Grace P; Wallis F; Walsh M; McGloughlin T
    Med Eng Phys; 2006 Jan; 28(1):19-26. PubMed ID: 15919225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Family of parametric second-order boundary schemes for the vectorial finite-difference-based lattice Boltzmann method.
    Zhang X; Feng M; Zhao J
    Phys Rev E; 2021 Nov; 104(5-2):055309. PubMed ID: 34942745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.