These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
286 related articles for article (PubMed ID: 30838859)
1. Spectral Tuning by a Single Nucleotide Controls the Fluorescence Properties of a Fluorogenic Aptamer. Filonov GS; Song W; Jaffrey SR Biochemistry; 2019 Mar; 58(12):1560-1564. PubMed ID: 30838859 [TBL] [Abstract][Full Text] [Related]
2. Broccoli: rapid selection of an RNA mimic of green fluorescent protein by fluorescence-based selection and directed evolution. Filonov GS; Moon JD; Svensen N; Jaffrey SR J Am Chem Soc; 2014 Nov; 136(46):16299-308. PubMed ID: 25337688 [TBL] [Abstract][Full Text] [Related]
3. Fluorophore-Promoted RNA Folding and Photostability Enables Imaging of Single Broccoli-Tagged mRNAs in Live Mammalian Cells. Li X; Kim H; Litke JL; Wu J; Jaffrey SR Angew Chem Int Ed Engl; 2020 Mar; 59(11):4511-4518. PubMed ID: 31850609 [TBL] [Abstract][Full Text] [Related]
4. Plug-and-play fluorophores extend the spectral properties of Spinach. Song W; Strack RL; Svensen N; Jaffrey SR J Am Chem Soc; 2014 Jan; 136(4):1198-201. PubMed ID: 24393009 [TBL] [Abstract][Full Text] [Related]
5. Imaging Intracellular Li X; Mo L; Litke JL; Dey SK; Suter SR; Jaffrey SR J Am Chem Soc; 2020 Aug; 142(33):14117-14124. PubMed ID: 32698574 [TBL] [Abstract][Full Text] [Related]
6. A homodimer interface without base pairs in an RNA mimic of red fluorescent protein. Warner KD; Sjekloća L; Song W; Filonov GS; Jaffrey SR; Ferré-D'Amaré AR Nat Chem Biol; 2017 Nov; 13(11):1195-1201. PubMed ID: 28945234 [TBL] [Abstract][Full Text] [Related]
7. Crystal structure and fluorescence properties of the iSpinach aptamer in complex with DFHBI. Fernandez-Millan P; Autour A; Ennifar E; Westhof E; Ryckelynck M RNA; 2017 Dec; 23(12):1788-1795. PubMed ID: 28939697 [TBL] [Abstract][Full Text] [Related]
8. Development of encoded Broccoli RNA aptamers for live cell imaging of alphavirus genomic and subgenomic RNAs. Nilaratanakul V; Hauer DA; Griffin DE Sci Rep; 2020 Mar; 10(1):5233. PubMed ID: 32251299 [TBL] [Abstract][Full Text] [Related]
9. Systematic reconstruction of binding and stability landscapes of the fluorogenic aptamer spinach. Ketterer S; Fuchs D; Weber W; Meier M Nucleic Acids Res; 2015 Oct; 43(19):9564-72. PubMed ID: 26400180 [TBL] [Abstract][Full Text] [Related]
10. Engineering Fluorophore Recycling in a Fluorogenic RNA Aptamer. Li X; Wu J; Jaffrey SR Angew Chem Int Ed Engl; 2021 Nov; 60(45):24153-24161. PubMed ID: 34490956 [TBL] [Abstract][Full Text] [Related]
11. Structure-based investigation of fluorogenic Pepper aptamer. Huang K; Chen X; Li C; Song Q; Li H; Zhu L; Yang Y; Ren A Nat Chem Biol; 2021 Dec; 17(12):1289-1295. PubMed ID: 34725509 [TBL] [Abstract][Full Text] [Related]
12. Rapid Selection of RNA Aptamers that Activate Fluorescence of Small Molecules. Filonov GS Methods Mol Biol; 2017; 1575():273-289. PubMed ID: 28255887 [TBL] [Abstract][Full Text] [Related]
13. iSpinach: a fluorogenic RNA aptamer optimized for in vitro applications. Autour A; Westhof E; Ryckelynck M Nucleic Acids Res; 2016 Apr; 44(6):2491-500. PubMed ID: 26932363 [TBL] [Abstract][Full Text] [Related]