These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 30839147)

  • 21. Self-assembled single-walled carbon nanotube:zinc-porphyrin hybrids through ammonium ion-crown ether interaction: construction and electron transfer.
    D'Souza F; Chitta R; Sandanayaka AS; Subbaiyan NK; D'Souza L; Araki Y; Ito O
    Chemistry; 2007; 13(29):8277-84. PubMed ID: 17625800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Covalent and Non-covalent Conjugation of Few-Layered Graphene Oxide and Ruthenium(II) Complex Hybrids and Their Energy Transfer Modulation via Enzymatic Hydrolysis.
    Chi-Ming Leung F; Wing-Wah Yam V
    ACS Appl Mater Interfaces; 2018 May; 10(18):15582-15590. PubMed ID: 29707949
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensitive efficiency of photoinduced electron transfer to band gaps of semiconductive single-walled carbon nanotubes with supramolecularly attached zinc porphyrin bearing pyrene glues.
    Maligaspe E; Sandanayaka AS; Hasobe T; Ito O; D'Souza F
    J Am Chem Soc; 2010 Jun; 132(23):8158-64. PubMed ID: 20499875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Amphiphilic Zinc Porphyrin Single-Walled Carbon Nanotube Hybrids: Efficient Formation and Excited State Charge Transfer Studies.
    Menon A; Münich PW; Wagner P; Officer DL; Guldi DM
    Small; 2021 Dec; 17(48):e2005648. PubMed ID: 33458948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A carbon nanohorn-porphyrin supramolecular assembly for photoinduced electron-transfer processes.
    Vizuete M; Gómez-Escalonilla MJ; Fierro JL; Sandanayaka AS; Hasobe T; Yudasaka M; Iijima S; Ito O; Langa F
    Chemistry; 2010 Sep; 16(35):10752-63. PubMed ID: 20687144
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Light Harvesting and Photocurrent Generation in a Conjugated Polymer Nanoparticle-Reduced Graphene Oxide Composite.
    Ghosh A; Jana B; Maiti S; Bera R; Ghosh HN; Patra A
    Chemphyschem; 2017 May; 18(10):1308-1316. PubMed ID: 28295982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Physicochemical and photophysical studies on porphyrin-based donor-acceptor systems: effect of redox potentials on ultrafast electron-transfer dynamics.
    Jose DA; Shukla AD; Ramakrishna G; Palit DK; Ghosh HN; Das A
    J Phys Chem B; 2007 Aug; 111(30):9078-87. PubMed ID: 17625819
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Lerf-Klinowski-type models of graphene oxide and reduced graphene oxide are robust in analyzing non-covalent functionalization with porphyrins.
    Siklitskaya A; Gacka E; Larowska D; Mazurkiewicz-Pawlicka M; Malolepszy A; Stobiński L; Marciniak B; Lewandowska-Andrałojć A; Kubas A
    Sci Rep; 2021 Apr; 11(1):7977. PubMed ID: 33846412
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Surfactant assistance in improvement of photocatalytic hydrogen production with the porphyrin noncovalently functionalized graphene nanocomposite.
    Zhu M; Li Z; Xiao B; Lu Y; Du Y; Yang P; Wang X
    ACS Appl Mater Interfaces; 2013 Mar; 5(5):1732-40. PubMed ID: 23384090
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Photoinduced bimolecular electron transfer from aromatic amines to pentafluorophenyl porphyrin combined with ultrafast charge recombination persistence with Marcus inverted region.
    Venkatesh Y; Munisamy V; Ramakrishna B; Kumar PH; Mandal H; Bangal PR
    Phys Chem Chem Phys; 2017 Feb; 19(7):5658-5673. PubMed ID: 28168248
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formation and Photoinduced Electron Transfer in Porphyrin- and Phthalocyanine-Bearing N-Doped Graphene Hybrids Synthesized by Click Chemistry.
    Arellano LM; Gobeze HB; Jang Y; Barrejón M; Parejo C; Álvarez JC; Gómez-Escalonilla MJ; Sastre-Santos Á; D'Souza F; Langa F
    Chemistry; 2022 Apr; 28(22):e202200254. PubMed ID: 35254708
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Covalent synthesis of organophilic chemically functionalized graphene sheets.
    Shen J; Li N; Shi M; Hu Y; Ye M
    J Colloid Interface Sci; 2010 Aug; 348(2):377-83. PubMed ID: 20494367
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engaging Copper(III) Corrole as an Electron Acceptor: Photoinduced Charge Separation in Zinc Porphyrin-Copper Corrole Donor-Acceptor Conjugates.
    Ngo TH; Zieba D; Webre WA; Lim GN; Karr PA; Kord S; Jin S; Ariga K; Galli M; Goldup S; Hill JP; D'Souza F
    Chemistry; 2016 Jan; 22(4):1301-12. PubMed ID: 26617262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced optical limiting and hydrogen evolution of graphene oxide nanohybrids covalently functionalized by covalent organic polymer based on porphyrin.
    Wang A; Shen X; Wang Q; Cheng L; Zhu W; Shang D; Song Y
    Dalton Trans; 2021 May; 50(20):7007-7016. PubMed ID: 33949532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and photophysical and photoelectrochemical properties of a covalently fixed porphyrin-chemically converted graphene composite.
    Umeyama T; Mihara J; Tezuka N; Matano Y; Stranius K; Chukharev V; Tkachenko NV; Lemmetyinen H; Noda K; Matsushige K; Shishido T; Liu Z; Hirose-Takai K; Suenaga K; Imahori H
    Chemistry; 2012 Apr; 18(14):4250-7. PubMed ID: 22374704
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoinduced electron transfer in ruthenium(II)/Tin(IV) multiporphyrin arrays.
    Indelli MT; Chiorboli C; Ghirotti M; Orlandi M; Scandola F; Kim HJ; Kim HJ
    J Phys Chem B; 2010 Nov; 114(45):14273-82. PubMed ID: 20067230
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interaction of graphene oxide with bovine serum albumin: A fluorescence quenching study.
    Nan Z; Hao C; Ye X; Feng Y; Sun R
    Spectrochim Acta A Mol Biomol Spectrosc; 2019 Mar; 210():348-354. PubMed ID: 30476875
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust Nanowrapping of Reduced Graphene Oxide by Metal-Organic Network Films between Fe Ions and Tetra(Catechol-Substituted) Porphyrin.
    Ozawa H; Kusaba S; Matsunaga M; Haga MA
    Langmuir; 2018 Mar; 34(9):2952-2958. PubMed ID: 29420902
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron-donating behavior of few-layer graphene in covalent ensembles with electron-accepting phthalocyanines.
    Ragoussi ME; Katsukis G; Roth A; Malig J; de la Torre G; Guldi DM; Torres T
    J Am Chem Soc; 2014 Mar; 136(12):4593-8. PubMed ID: 24568604
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bionano donor-acceptor hybrids of porphyrin, ssDNA, and semiconductive single-wall carbon nanotubes for electron transfer via porphyrin excitation.
    D'Souza F; Das SK; Zandler ME; Sandanayaka AS; Ito O
    J Am Chem Soc; 2011 Dec; 133(49):19922-30. PubMed ID: 22088093
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.