These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 30839152)

  • 1. Paleoenvironmental proxies and what the Xiamaling Formation tells us about the mid-Proterozoic ocean.
    Zhang S; Wang X; Wang H; Bjerrum CJ; Hammarlund EU; Haxen ER; Wen H; Ye Y; Canfield DE
    Geobiology; 2019 May; 17(3):225-246. PubMed ID: 30839152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. What the ~1.4 Ga Xiamaling Formation can and cannot tell us about the mid-Proterozoic ocean.
    Diamond CW; Planavsky NJ; Wang C; Lyons TW
    Geobiology; 2018 May; 16(3):219-236. PubMed ID: 29577549
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tracing the stepwise oxygenation of the Proterozoic ocean.
    Scott C; Lyons TW; Bekker A; Shen Y; Poulton SW; Chu X; Anbar AD
    Nature; 2008 Mar; 452(7186):456-9. PubMed ID: 18368114
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation.
    Sperling EA; Wolock CJ; Morgan AS; Gill BC; Kunzmann M; Halverson GP; Macdonald FA; Knoll AH; Johnston DT
    Nature; 2015 Jul; 523(7561):451-4. PubMed ID: 26201598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: Searching across a marine redox gradient in mid-Proterozoic habitability.
    Nguyen K; Love GD; Zumberge JA; Kelly AE; Owens JD; Rohrssen MK; Bates SM; Cai C; Lyons TW
    Geobiology; 2019 May; 17(3):247-260. PubMed ID: 30629323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High Molybdenum availability for evolution in a Mesoproterozoic lacustrine environment.
    Parnell J; Spinks S; Andrews S; Thayalan W; Bowden S
    Nat Commun; 2015 May; 6():6996. PubMed ID: 25988499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans.
    Hamilton TL; Bryant DA; Macalady JL
    Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The aerobic diagenesis of Mesoproterozoic organic matter.
    Wang X; Zhao W; Zhang S; Wang H; Su J; Canfield DE; Hammarlund EU
    Sci Rep; 2018 Sep; 8(1):13324. PubMed ID: 30190572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence for low sulphate and anoxia in a mid-Proterozoic marine basin.
    Shen Y; Knoll AH; Walter MR
    Nature; 2003 Jun; 423(6940):632-5. PubMed ID: 12789336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rise to modern levels of ocean oxygenation coincided with the Cambrian radiation of animals.
    Chen X; Ling HF; Vance D; Shields-Zhou GA; Zhu M; Poulton SW; Och LM; Jiang SY; Li D; Cremonese L; Archer C
    Nat Commun; 2015 May; 6():7142. PubMed ID: 25980960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
    Planavsky NJ; Reinhard CT; Wang X; Thomson D; McGoldrick P; Rainbird RH; Johnson T; Fischer WW; Lyons TW
    Science; 2014 Oct; 346(6209):635-8. PubMed ID: 25359975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Archean Nickel Famine Revisited.
    Konhauser KO; Robbins LJ; Pecoits E; Peacock C; Kappler A; Lalonde SV
    Astrobiology; 2015 Oct; 15(10):804-15. PubMed ID: 26426143
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strontium isotopic variations of Neoproterozoic seawater: implications for crustal evolution.
    Asmerom Y; Jacobsen SB; Knoll AH; Butterfield NJ; Swett K
    Geochim Cosmochim Acta; 1991; 55():2883-94. PubMed ID: 11537198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Orbital forcing of climate 1.4 billion years ago.
    Zhang S; Wang X; Hammarlund EU; Wang H; Costa MM; Bjerrum CJ; Connelly JN; Zhang B; Bian L; Canfield DE
    Proc Natl Acad Sci U S A; 2015 Mar; 112(12):E1406-13. PubMed ID: 25775605
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ocean oxygenation in the wake of the Marinoan glaciation.
    Sahoo SK; Planavsky NJ; Kendall B; Wang X; Shi X; Scott C; Anbar AD; Lyons TW; Jiang G
    Nature; 2012 Sep; 489(7417):546-9. PubMed ID: 23018964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the atmosphere and oceans.
    Holland HD; Lazar B; McCaffrey M
    Nature; 1986 Mar; 320(6057):27-33. PubMed ID: 11540871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sirius Passet Lagerstätte of North Greenland-A geochemical window on early Cambrian low-oxygen environments and ecosystems.
    Hammarlund EU; Smith MP; Rasmussen JA; Nielsen AT; Canfield DE; Harper DAT
    Geobiology; 2019 Jan; 17(1):12-26. PubMed ID: 30264482
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sufficient oxygen for animal respiration 1,400 million years ago.
    Zhang S; Wang X; Wang H; Bjerrum CJ; Hammarlund EU; Costa MM; Connelly JN; Zhang B; Su J; Canfield DE
    Proc Natl Acad Sci U S A; 2016 Feb; 113(7):1731-6. PubMed ID: 26729865
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary.
    Wille M; Nägler TF; Lehmann B; Schröder S; Kramers JD
    Nature; 2008 Jun; 453(7196):767-9. PubMed ID: 18509331
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early oxygenation of the terrestrial environment during the Mesoproterozoic.
    Parnell J; Boyce AJ; Mark D; Bowden S; Spinks S
    Nature; 2010 Nov; 468(7321):290-3. PubMed ID: 21068840
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.