These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
161 related articles for article (PubMed ID: 30839209)
21. Effects of Aib residues insertion on the structural-functional properties of the frog skin-derived peptide esculentin-1a(1-21)NH Biondi B; Casciaro B; Di Grazia A; Cappiello F; Luca V; Crisma M; Mangoni ML Amino Acids; 2017 Jan; 49(1):139-150. PubMed ID: 27726008 [TBL] [Abstract][Full Text] [Related]
22. Intramembrane Nanoaggregates of Antimicrobial Peptides Play a Vital Role in Bacterial Killing. Liao M; Gong H; Quan X; Wang Z; Hu X; Chen Z; Li Z; Liu H; Zhang L; McBain AJ; Waigh TA; Zhou J; Lu JR Small; 2023 Jan; 19(3):e2204428. PubMed ID: 36417574 [TBL] [Abstract][Full Text] [Related]
23. In silico design of antimicrobial peptides. Maccari G; Di Luca M; Nifosì R Methods Mol Biol; 2015; 1268():195-219. PubMed ID: 25555726 [TBL] [Abstract][Full Text] [Related]
24. Theoretical insight into the relationship between the structures of antimicrobial peptides and their actions on bacterial membranes. Chen L; Li X; Gao L; Fang W J Phys Chem B; 2015 Jan; 119(3):850-60. PubMed ID: 25062757 [TBL] [Abstract][Full Text] [Related]
25. How Melittin Inserts into Cell Membrane: Conformational Changes, Inter-Peptide Cooperation, and Disturbance on the Membrane. Hong J; Lu X; Deng Z; Xiao S; Yuan B; Yang K Molecules; 2019 May; 24(9):. PubMed ID: 31067828 [TBL] [Abstract][Full Text] [Related]
26. Design, Synthesis, and Evaluation of Amphiphilic Cyclic and Linear Peptides Composed of Hydrophobic and Positively-Charged Amino Acids as Antibacterial Agents. Riahifard N; Mozaffari S; Aldakhil T; Nunez F; Alshammari Q; Alshammari S; Yamaki J; Parang K; Tiwari RK Molecules; 2018 Oct; 23(10):. PubMed ID: 30360400 [TBL] [Abstract][Full Text] [Related]
27. Effects and mechanisms of the secondary structure on the antimicrobial activity and specificity of antimicrobial peptides. Mai XT; Huang J; Tan J; Huang Y; Chen Y J Pept Sci; 2015 Jul; 21(7):561-8. PubMed ID: 25826179 [TBL] [Abstract][Full Text] [Related]
28. Computational study of solution behavior of magainin 2 monomers. Petkov P; Marinova R; Kochev V; Ilieva N; Lilkova E; Litov L J Biomol Struct Dyn; 2019 Mar; 37(5):1231-1240. PubMed ID: 29557267 [TBL] [Abstract][Full Text] [Related]
29. Methodology for identification of pore forming antimicrobial peptides from soy protein subunits β-conglycinin and glycinin. Xiang N; Lyu Y; Zhu X; Bhunia AK; Narsimhan G Peptides; 2016 Nov; 85():27-40. PubMed ID: 27612614 [TBL] [Abstract][Full Text] [Related]
30. Membrane active antimicrobial activity and molecular dynamics study of a novel cationic antimicrobial peptide polybia-MPI, from the venom of Polybia paulista. Wang K; Yan J; Dang W; Liu X; Chen R; Zhang J; Zhang B; Zhang W; Kai M; Yan W; Yang Z; Xie J; Wang R Peptides; 2013 Jan; 39():80-8. PubMed ID: 23159560 [TBL] [Abstract][Full Text] [Related]
31. Rational Design of Membrane-Pore-Forming Peptides. Pillong M; Hiss JA; Schneider P; Lin YC; Posselt G; Pfeiffer B; Blatter M; Müller AT; Bachler S; Neuhaus CS; Dittrich PS; Altmann KH; Wessler S; Schneider G Small; 2017 Oct; 13(40):. PubMed ID: 28799716 [TBL] [Abstract][Full Text] [Related]
32. A Synthetic Derivative of Antimicrobial Peptide Holothuroidin 2 from Mediterranean Sea Cucumber ( Cusimano MG; Spinello A; Barone G; Schillaci D; Cascioferro S; Magistrato A; Parrino B; Arizza V; Vitale M Mar Drugs; 2019 Mar; 17(3):. PubMed ID: 30857142 [TBL] [Abstract][Full Text] [Related]
33. Topological effects on the designability and bactericidal potency of antimicrobial peptides. Hazam PK; Akhil R; Jerath G; Saikia J; Ramakrishnan V Biophys Chem; 2019 May; 248():1-8. PubMed ID: 30836162 [TBL] [Abstract][Full Text] [Related]
34. Augmentation of the antibacterial activities of Pt5-derived antimicrobial peptides (AMPs) by amino acid substitutions: Design of novel AMPs against MDR bacteria. Wang Y; Cui P; Zhang Y; Yang Q; Zhang S Fish Shellfish Immunol; 2018 Jun; 77():100-111. PubMed ID: 29567140 [TBL] [Abstract][Full Text] [Related]
35. Membrane targeting cationic antimicrobial peptides. Ciumac D; Gong H; Hu X; Lu JR J Colloid Interface Sci; 2019 Mar; 537():163-185. PubMed ID: 30439615 [TBL] [Abstract][Full Text] [Related]
36. De novo generation of short antimicrobial peptides with enhanced stability and cell specificity. Kim H; Jang JH; Kim SC; Cho JH J Antimicrob Chemother; 2014 Jan; 69(1):121-32. PubMed ID: 23946320 [TBL] [Abstract][Full Text] [Related]
37. Design of short membrane selective antimicrobial peptides containing tryptophan and arginine residues for improved activity, salt-resistance, and biocompatibility. Saravanan R; Li X; Lim K; Mohanram H; Peng L; Mishra B; Basu A; Lee JM; Bhattacharjya S; Leong SS Biotechnol Bioeng; 2014 Jan; 111(1):37-49. PubMed ID: 23860860 [TBL] [Abstract][Full Text] [Related]
38. Antimicrobial and Antibiofilm Activities of Helical Antimicrobial Peptide Sequences Incorporating Metal-Binding Motifs. Agbale CM; Sarfo JK; Galyuon IK; Juliano SA; Silva GGO; Buccini DF; Cardoso MH; Torres MDT; Angeles-Boza AM; de la Fuente-Nunez C; Franco OL Biochemistry; 2019 Sep; 58(36):3802-3812. PubMed ID: 31448597 [TBL] [Abstract][Full Text] [Related]
39. Design and characterization of short antimicrobial peptides using leucine zipper templates with selectivity towards microorganisms. Ahmad A; Azmi S; Srivastava S; Kumar A; Tripathi JK; Mishra NN; Shukla PK; Ghosh JK Amino Acids; 2014 Nov; 46(11):2531-43. PubMed ID: 25069749 [TBL] [Abstract][Full Text] [Related]
40. Designing Antibacterial Peptides with Enhanced Killing Kinetics. Waghu FH; Joseph S; Ghawali S; Martis EA; Madan T; Venkatesh KV; Idicula-Thomas S Front Microbiol; 2018; 9():325. PubMed ID: 29527201 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]