These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 30839216)

  • 1. Classification and Prediction of Dripping Drop Size for a Wide Range of Nozzles by Wetting Diameter.
    Tsai PH; Wang AB
    Langmuir; 2019 Apr; 35(13):4763-4775. PubMed ID: 30839216
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Capillary-Driven Rise of Well-Wetting Liquid on the Outer Surface of Cylindrical Nozzles.
    Sedighi E; Zeng Z; Sadeghpour A; Ji H; Ju YS; Bertozzi AL
    Langmuir; 2021 Sep; 37(35):10413-10423. PubMed ID: 34428061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surface wettability and liquid viscosity on the dynamic wetting of individual drops.
    Chen L; Bonaccurso E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022401. PubMed ID: 25215736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solid-liquid-liquid wettability and its prediction with surface free energy models.
    Stammitti-Scarpone A; Acosta EJ
    Adv Colloid Interface Sci; 2019 Feb; 264():28-46. PubMed ID: 30396508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of liquid drops at an orifice and dynamics of pinch-off in liquid jets.
    Borthakur MP; Biswas G; Bandyopadhyay D
    Phys Rev E; 2017 Jul; 96(1-1):013115. PubMed ID: 29347101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of gas backing pressure and geometry of conical nozzle on the formation of methane clusters in supersonic jets.
    Lu H; Chen G; Ni G; Li R; Xu Z
    J Phys Chem A; 2010 Jan; 114(1):2-9. PubMed ID: 19957980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spreading of liquid drops over dry porous layers: complete wetting case.
    Starov VM; Kostvintsev SR; Sobolev VD; Velarde MG; Zhdanov SA
    J Colloid Interface Sci; 2002 Aug; 252(2):397-408. PubMed ID: 16290805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental study of dripping dynamics.
    D'Innocenzo A; Paladini F; Renna L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May; 65(5 Pt 2):056208. PubMed ID: 12059681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Short-time dynamics of partial wetting.
    Bird JC; Mandre S; Stone HA
    Phys Rev Lett; 2008 Jun; 100(23):234501. PubMed ID: 18643505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A priori performance prediction in pharmaceutical wet granulation: testing the applicability of the nucleation regime map to a formulation with a broad size distribution and dry binder addition.
    Kayrak-Talay D; Litster JD
    Int J Pharm; 2011 Oct; 418(2):254-64. PubMed ID: 21530625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Drop rebound after impact: the role of the receding contact angle.
    Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M
    Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Laser-diffraction characterization of flat-fan nozzles used to develop aerosol clouds of aerially applied mosquito adulticides.
    Hornby JA; Robinson J; Opp W; Sterling M
    J Am Mosq Control Assoc; 2006 Dec; 22(4):702-6. PubMed ID: 17304940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emulsion droplet formation in coflowing liquid streams.
    Chen Y; Wu L; Zhang C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):013002. PubMed ID: 23410421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simultaneous spreading and evaporation: recent developments.
    Semenov S; Trybala A; Rubio RG; Kovalchuk N; Starov V; Velarde MG
    Adv Colloid Interface Sci; 2014 Apr; 206():382-98. PubMed ID: 24075076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capabilities and Limitations of Fire-Shaping to Produce Glass Nozzles.
    Rubio A; Rodríguez S; Cabezas MG
    Materials (Basel); 2020 Dec; 13(23):. PubMed ID: 33271928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An effective medium approach to predict the apparent contact angle of drops on super-hydrophobic randomly rough surfaces.
    Bottiglione F; Carbone G
    J Phys Condens Matter; 2015 Jan; 27(1):015009. PubMed ID: 25469488
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An experimental investigation on the performance of conical nozzles for argon cluster formation in supersonic jets.
    Lu H; Ni G; Li R; Xu Z
    J Chem Phys; 2010 Mar; 132(12):124303. PubMed ID: 20370119
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.