These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 30839575)

  • 1. Exponential stability for neutral stochastic functional partial differential equations driven by Brownian motion and fractional Brownian motion.
    Zhang X; Ruan D
    J Inequal Appl; 2018; 2018(1):201. PubMed ID: 30839575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analytical Solutions for Multi-Time Scale Fractional Stochastic Differential Equations Driven by Fractional Brownian Motion and Their Applications.
    Ding XL; Nieto JJ
    Entropy (Basel); 2018 Jan; 20(1):. PubMed ID: 33265151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the pth moment estimates of solutions to stochastic functional differential equations in the G-framework.
    Faizullah F
    Springerplus; 2016; 5(1):872. PubMed ID: 27386321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive solutions of fractional integral equations by the technique of measure of noncompactness.
    Nashine HK; Arab R; Agarwal RP; De la Sen M
    J Inequal Appl; 2017; 2017(1):225. PubMed ID: 28983180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Approximation of SDEs: a stochastic sewing approach.
    Butkovsky O; Dareiotis K; Gerencsér M
    Probab Theory Relat Fields; 2021; 181(4):975-1034. PubMed ID: 34898772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Variational solutions and random dynamical systems to SPDEs perturbed by fractional Gaussian noise.
    Zeng C; Yang Q; Cao J
    ScientificWorldJournal; 2014; 2014():601327. PubMed ID: 24574903
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient aging in fractional Brownian and Langevin-equation motion.
    Kursawe J; Schulz J; Metzler R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062124. PubMed ID: 24483403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integral representation of generalized grey Brownian motion.
    Bock W; Desmettre S; da Silva JL
    Stochastics (Abingdon); 2019 Jul; 92(4):552-565. PubMed ID: 32939219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic averaging for a type of fractional differential equations with multiplicative fractional Brownian motion.
    Wang R; Xu Y; Pei B
    Chaos; 2022 Dec; 32(12):123135. PubMed ID: 36587315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllability of fractional higher order stochastic integrodifferential systems with fractional Brownian motion.
    Sathiyaraj T; Balasubramaniam P
    ISA Trans; 2018 Nov; 82():107-119. PubMed ID: 29198978
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Derivative of the expected supremum of fractional Brownian motion at
    Bisewski K; Dȩbicki K; Rolski T
    Queueing Syst; 2022; 102(1-2):53-68. PubMed ID: 36213862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integral sliding mode control and stability for Markov jump systems with structured perturbations and time-varying delay driven by fractional Brownian motion.
    Zhou X; Zhou X; Cheng J; He P; Cao J
    ISA Trans; 2024 Aug; 151():62-72. PubMed ID: 38816326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First passage in an interval for fractional Brownian motion.
    Wiese KJ
    Phys Rev E; 2019 Mar; 99(3-1):032106. PubMed ID: 30999514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. STOCHASTIC INTEGRATION FOR TEMPERED FRACTIONAL BROWNIAN MOTION.
    Meerschaert MM; Sabzikar F
    Stoch Process Their Appl; 2014 Jul; 124(7):2363-2387. PubMed ID: 24872598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fractional calculus in hydrologic modeling: A numerical perspective.
    Benson DA; Meerschaert MM; Revielle J
    Adv Water Resour; 2013 Jan; 51():479-497. PubMed ID: 23524449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise.
    Fahim K; Hausenblas E; Kovács M
    Stoch Partial Differ Equ; 2023; 11(3):1044-1088. PubMed ID: 37551409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonautonomous Young Differential Equations Revisited.
    Cong ND; Duc LH; Hong PT
    J Dyn Differ Equ; 2018; 30(4):1921-1943. PubMed ID: 30459489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability Analysis and Application for Delayed Neural Networks Driven by Fractional Brownian Noise.
    Zhou W; Zhou X; Yang J; Zhou J; Tong D
    IEEE Trans Neural Netw Learn Syst; 2018 May; 29(5):1491-1502. PubMed ID: 28362593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ergodic properties of fractional Brownian-Langevin motion.
    Deng W; Barkai E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011112. PubMed ID: 19257006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anomalous diffusion as modeled by a nonstationary extension of Brownian motion.
    Cushman JH; O'Malley D; Park M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):032101. PubMed ID: 19391995
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.