These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. M-shaped grating by nanoimprinting: a replicable, large-area, highly active plasmonic surface-enhanced Raman scattering substrate with nanogaps. Zhu Z; Bai B; Duan H; Zhang H; Zhang M; You O; Li Q; Tan Q; Wang J; Fan S; Jin G Small; 2014 Apr; 10(8):1603-11. PubMed ID: 24665074 [TBL] [Abstract][Full Text] [Related]
26. Optical field enhancement by strong plasmon interaction in graphene nanostructures. Thongrattanasiri S; García de Abajo FJ Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241 [TBL] [Abstract][Full Text] [Related]
27. Plasmonic Ag Core-Satellite Nanostructures with a Tunable Silica-Spaced Nanogap for Surface-Enhanced Raman Scattering. Rong Z; Xiao R; Wang C; Wang D; Wang S Langmuir; 2015 Jul; 31(29):8129-37. PubMed ID: 26132410 [TBL] [Abstract][Full Text] [Related]
28. Dielectric-loading approach for extra electric field enhancement and spatially transferring plasmonic hot-spots. Wan M; Wu J; Liu J; Chen Z; Gu P; Zhan P; Wang Z; Bozhevolnyi SI Nanotechnology; 2021 Jan; 32(3):035205. PubMed ID: 33094736 [TBL] [Abstract][Full Text] [Related]
29. Improving resolution in quantum subnanometre-gap tip-enhanced Raman nanoimaging. Zhang Y; Voronine DV; Qiu S; Sinyukov AM; Hamilton M; Liege Z; Sokolov AV; Zhang Z; Scully MO Sci Rep; 2016 May; 6():25788. PubMed ID: 27220882 [TBL] [Abstract][Full Text] [Related]
31. A centimeter-scale sub-10 nm gap plasmonic nanorod array film as a versatile platform for enhancing light-matter interactions. Zhou ZK; Xue J; Zheng Z; Li J; Ke Y; Yu Y; Han JB; Xie W; Deng S; Chen H; Wang X Nanoscale; 2015 Oct; 7(37):15392-403. PubMed ID: 26335388 [TBL] [Abstract][Full Text] [Related]
32. Revealing local, enhanced optical field characteristics of Au nanoparticle arrays with 10 nm gap using scattering-type scanning near-field optical microscopy. Cheng TY; Wang HH; Chang SH; Chu JY; Lee JH; Wang YL; Wang JK Phys Chem Chem Phys; 2013 Mar; 15(12):4275-82. PubMed ID: 23439965 [TBL] [Abstract][Full Text] [Related]
33. Simultaneously tuning the electric and magnetic plasmonic response using capped bi-metallic nanoantennas. Roxworthy BJ; Toussaint KC Nanoscale; 2014 Feb; 6(4):2270-4. PubMed ID: 24407278 [TBL] [Abstract][Full Text] [Related]
34. High Aspect-Ratio Iridium-Coated Nanopillars for Highly Reproducible Surface-Enhanced Raman Scattering (SERS). Kang G; Matikainen A; Stenberg P; Färm E; Li P; Ritala M; Vahimaa P; Honkanen S; Tan X ACS Appl Mater Interfaces; 2015 Jun; 7(21):11452-9. PubMed ID: 25961706 [TBL] [Abstract][Full Text] [Related]
35. Plasmonic-3D photonic crystals microchip for surface enhanced Raman spectroscopy. Chen G; Zhang K; Luo B; Hong W; Chen J; Chen X Biosens Bioelectron; 2019 Oct; 143():111596. PubMed ID: 31442754 [TBL] [Abstract][Full Text] [Related]
37. Quantitative comparison of plasmon resonances and field enhancements of near-field optical antennae using FDTD simulations. Hermann RJ; Gordon MJ Opt Express; 2018 Oct; 26(21):27668-27682. PubMed ID: 30469829 [TBL] [Abstract][Full Text] [Related]
38. Anomalously Large Spectral Shifts near the Quantum Tunnelling Limit in Plasmonic Rulers with Subatomic Resolution. Readman C; de Nijs B; Szabó I; Demetriadou A; Greenhalgh R; Durkan C; Rosta E; Scherman OA; Baumberg JJ Nano Lett; 2019 Mar; 19(3):2051-2058. PubMed ID: 30726095 [TBL] [Abstract][Full Text] [Related]
39. Probing Gap Plasmons Down to Subnanometer Scales Using Collapsible Nanofingers. Song B; Yao Y; Groenewald RE; Wang Y; Liu H; Wang Y; Li Y; Liu F; Cronin SB; Schwartzberg AM; Cabrini S; Haas S; Wu W ACS Nano; 2017 Jun; 11(6):5836-5843. PubMed ID: 28599108 [TBL] [Abstract][Full Text] [Related]
40. Plasmonic refractive index sensing using strongly coupled metal nanoantennas: nonlocal limitations. Wang H Sci Rep; 2018 Jun; 8(1):9589. PubMed ID: 29941992 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]