These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 30839659)
81. One-pot solvothermal synthesis of reduced graphene oxide-supported uniform PtCo nanocrystals for efficient and robust electrocatalysis. Meng HB; Zhang XF; Pu YL; Chen XL; Feng JJ; Han DM; Wang AJ J Colloid Interface Sci; 2019 May; 543():17-24. PubMed ID: 30772535 [TBL] [Abstract][Full Text] [Related]
82. One-pot synthesis of metal-carbon nanotubes network hybrids as highly efficient catalysts for oxygen evolution reaction of water splitting. Cheng Y; Liu C; Cheng HM; Jiang SP ACS Appl Mater Interfaces; 2014 Jul; 6(13):10089-98. PubMed ID: 24927372 [TBL] [Abstract][Full Text] [Related]
83. Graphene-covered transition metal halide molecules as efficient and durable electrocatalysts for oxygen reduction and evolution reactions. Zhang D; Zhang J; Gong L; Zhu Y; Zhang L; Xia Z Phys Chem Chem Phys; 2019 Oct; 21(41):23094-23101. PubMed ID: 31603158 [TBL] [Abstract][Full Text] [Related]
84. Dual-phase spinel MnCo2O4 and spinel MnCo2O4/nanocarbon hybrids for electrocatalytic oxygen reduction and evolution. Ge X; Liu Y; Goh FW; Hor TS; Zong Y; Xiao P; Zhang Z; Lim SH; Li B; Wang X; Liu Z ACS Appl Mater Interfaces; 2014 Aug; 6(15):12684-91. PubMed ID: 25058393 [TBL] [Abstract][Full Text] [Related]
85. Facile construction of ultrafine nickel-zinc oxyphosphide nanosheets as high-performance electrocatalysts for oxygen evolution reaction. Xu H; Song P; Liu C; Zhang Y; Du Y J Colloid Interface Sci; 2018 Nov; 530():58-66. PubMed ID: 29960909 [TBL] [Abstract][Full Text] [Related]
86. Iron Carbide Nanoparticles Encapsulated in Mesoporous Fe-N-Doped Graphene-Like Carbon Hybrids as Efficient Bifunctional Oxygen Electrocatalysts. Jiang H; Yao Y; Zhu Y; Liu Y; Su Y; Yang X; Li C ACS Appl Mater Interfaces; 2015 Sep; 7(38):21511-20. PubMed ID: 26371772 [TBL] [Abstract][Full Text] [Related]
87. Cobalt Hydroxide Carbonate/Reduced Graphene Oxide Anodes Enabled by a Confined Step-by-Step Electrochemical Catalytic Conversion Process for High Lithium Storage Capacity and Excellent Cyclability with a Low Variance Coefficient. Jing YQ; Qu J; Chang W; Ji QY; Liu HJ; Zhang TT; Yu ZZ ACS Appl Mater Interfaces; 2019 Sep; 11(36):33091-33101. PubMed ID: 31414794 [TBL] [Abstract][Full Text] [Related]
88. In situ electrochemical development of copper oxide nanocatalysts within a TCNQ nanowire array: a highly conductive electrocatalyst for the oxygen evolution reaction. Ren X; Ji X; Wei Y; Wu D; Zhang Y; Ma M; Liu Z; Asiri AM; Wei Q; Sun X Chem Commun (Camb); 2018 Feb; 54(12):1425-1428. PubMed ID: 29251309 [TBL] [Abstract][Full Text] [Related]
89. One-pot hydrothermal synthesis of Zinc ferrite/reduced graphene oxide as an efficient electrocatalyst for oxygen reduction reaction. Hong W; Li L; Xue R; Xu X; Wang H; Zhou J; Zhao H; Song Y; Liu Y; Gao J J Colloid Interface Sci; 2017 Jan; 485():175-182. PubMed ID: 27664525 [TBL] [Abstract][Full Text] [Related]
90. Benzoate Anion-Intercalated Layered Cobalt Hydroxide Nanoarray: An Efficient Electrocatalyst for the Oxygen Evolution Reaction. Ge R; Ren X; Ji X; Liu Z; Du G; Asiri AM; Sun X; Chen L ChemSusChem; 2017 Oct; 10(20):4004-4008. PubMed ID: 28840643 [TBL] [Abstract][Full Text] [Related]
91. In Situ Electrodeposition of Cobalt Sulfide Nanosheet Arrays on Carbon Cloth as a Highly Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. Liu B; Qu S; Kou Y; Liu Z; Chen X; Wu Y; Han X; Deng Y; Hu W; Zhong C ACS Appl Mater Interfaces; 2018 Sep; 10(36):30433-30440. PubMed ID: 30052415 [TBL] [Abstract][Full Text] [Related]
92. In Situ Fabrication of a Nickel/Molybdenum Carbide-Anchored N-Doped Graphene/CNT Hybrid: An Efficient (Pre)catalyst for OER and HER. Das D; Santra S; Nanda KK ACS Appl Mater Interfaces; 2018 Oct; 10(41):35025-35038. PubMed ID: 30244572 [TBL] [Abstract][Full Text] [Related]
93. Transition-Metal-Based Electrocatalysts as Cocatalysts for Photoelectrochemical Water Splitting: A Mini Review. Li D; Shi J; Li C Small; 2018 Jun; 14(23):e1704179. PubMed ID: 29575653 [TBL] [Abstract][Full Text] [Related]
94. Synergistic Modulation of Non-Precious-Metal Electrocatalysts for Advanced Water Splitting. Jiang WJ; Tang T; Zhang Y; Hu JS Acc Chem Res; 2020 Jun; 53(6):1111-1123. PubMed ID: 32466638 [TBL] [Abstract][Full Text] [Related]
95. Facile synthesis of magnetically separable reduced graphene oxide/magnetite/silver nanocomposites with enhanced catalytic activity. Ji Z; Shen X; Yue X; Zhou H; Yang J; Wang Y; Ma L; Chen K J Colloid Interface Sci; 2015 Dec; 459():79-85. PubMed ID: 26263498 [TBL] [Abstract][Full Text] [Related]
96. Phase-pure pentlandite Ni Tang Y; Yang H; Sun J; Xia M; Guo W; Yu L; Yan J; Zheng J; Chang L; Gao F Nanoscale; 2018 Jun; 10(22):10459-10466. PubMed ID: 29796565 [TBL] [Abstract][Full Text] [Related]
97. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. Liang Y; Li Y; Wang H; Dai H J Am Chem Soc; 2013 Feb; 135(6):2013-36. PubMed ID: 23339685 [TBL] [Abstract][Full Text] [Related]
98. Datura-like Ni-HG-rGO as highly efficient electrocatalyst for hydrogen evolution reaction in alkaline conditions. Du J; Wang L; Bai L; Dang S; Su L; Qin X; Shao G J Colloid Interface Sci; 2019 Feb; 535():75-83. PubMed ID: 30286309 [TBL] [Abstract][Full Text] [Related]
99. Metal-Organic Framework-Derived Nickel-Cobalt Sulfide on Ultrathin Mxene Nanosheets for Electrocatalytic Oxygen Evolution. Zou H; He B; Kuang P; Yu J; Fan K ACS Appl Mater Interfaces; 2018 Jul; 10(26):22311-22319. PubMed ID: 29888588 [TBL] [Abstract][Full Text] [Related]
100. Iron Is the Active Site in Nickel/Iron Water Oxidation Electrocatalysts. Hunter BM; Winkler JR; Gray HB Molecules; 2018 Apr; 23(4):. PubMed ID: 29661996 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]