These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 30839715)
1. Error estimates of finite element methods for fractional stochastic Navier-Stokes equations. Li X; Yang X J Inequal Appl; 2018; 2018(1):284. PubMed ID: 30839715 [TBL] [Abstract][Full Text] [Related]
2. Finite Element Iterative Methods for the 3D Steady Navier--Stokes Equations. He Y Entropy (Basel); 2021 Dec; 23(12):. PubMed ID: 34945965 [TBL] [Abstract][Full Text] [Related]
3. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations. Xie C; Wang K Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169 [TBL] [Abstract][Full Text] [Related]
4. The Optimal Error Estimate of the Fully Discrete Locally Stabilized Finite Volume Method for the Non-Stationary Navier-Stokes Problem. He G; Zhang Y Entropy (Basel); 2022 May; 24(6):. PubMed ID: 35741489 [TBL] [Abstract][Full Text] [Related]
5. Uniform Error Estimates of the Finite Element Method for the Navier-Stokes Equations in R2 with Ren S; Wang K; Feng X Entropy (Basel); 2023 Apr; 25(5):. PubMed ID: 37238481 [TBL] [Abstract][Full Text] [Related]
6. Some approximation results for mild solutions of stochastic fractional order evolution equations driven by Gaussian noise. Fahim K; Hausenblas E; Kovács M Stoch Partial Differ Equ; 2023; 11(3):1044-1088. PubMed ID: 37551409 [TBL] [Abstract][Full Text] [Related]
7. Radial Basis Function Finite Difference Method Based on Oseen Iteration for Solving Two-Dimensional Navier-Stokes Equations. Mu L; Feng X Entropy (Basel); 2023 May; 25(5):. PubMed ID: 37238559 [TBL] [Abstract][Full Text] [Related]
8. A Mixed Finite Element Method for Stationary Magneto-Heat Coupling System with Variable Coefficients. Ding Q; Long X; Mao S Entropy (Basel); 2022 Jun; 24(7):. PubMed ID: 35885135 [TBL] [Abstract][Full Text] [Related]
9. An analysis of the Rayleigh-Stokes problem for a generalized second-grade fluid. Bazhlekova E; Jin B; Lazarov R; Zhou Z Numer Math (Heidelb); 2015; 131(1):1-31. PubMed ID: 28615736 [TBL] [Abstract][Full Text] [Related]
10. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space. Kavvas ML; Ercan A Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242 [TBL] [Abstract][Full Text] [Related]
11. Error estimates and physics informed augmentation of neural networks for thermally coupled incompressible Navier Stokes equations. Goraya S; Sobh N; Masud A Comput Mech; 2023 Aug; 72(2):267-289. PubMed ID: 37583614 [TBL] [Abstract][Full Text] [Related]
12. COMPUTING ILL-POSED TIME-REVERSED 2D NAVIER-STOKES EQUATIONS, USING A STABILIZED EXPLICIT FINITE DIFFERENCE SCHEME MARCHING BACKWARD IN TIME. Carasso AS Inverse Probl Sci Eng; 2020; 28(7):. PubMed ID: 34131431 [TBL] [Abstract][Full Text] [Related]
13. The meshless local Petrov-Galerkin method based on moving Kriging interpolation for solving the time fractional Navier-Stokes equations. Thamareerat N; Luadsong A; Aschariyaphotha N Springerplus; 2016; 5():417. PubMed ID: 27099822 [TBL] [Abstract][Full Text] [Related]
14. Numerical Analysis and Comparison of Four Stabilized Finite Element Methods for the Steady Micropolar Equations. Liu J; Liu D Entropy (Basel); 2022 Mar; 24(4):. PubMed ID: 35455117 [TBL] [Abstract][Full Text] [Related]
15. A Source Term Approach for Generation of One-way Acoustic Waves in the Euler and Navier-Stokes equations. Maeda K; Colonius T Wave Motion; 2017 Dec; 75():36-49. PubMed ID: 30270952 [TBL] [Abstract][Full Text] [Related]
16. Numerical analysis of an H1-Galerkin mixed finite element method for time fractional telegraph equation. Wang J; Zhao M; Zhang M; Liu Y; Li H ScientificWorldJournal; 2014; 2014():371413. PubMed ID: 25184148 [TBL] [Abstract][Full Text] [Related]
17. Stochastic Navier-Stokes Equations on a Thin Spherical Domain. Brzeźniak Z; Dhariwal G; Le Gia QT Appl Math Optim; 2021; 84(2):1971-2035. PubMed ID: 34720249 [TBL] [Abstract][Full Text] [Related]
18. A semi-implicit augmented IIM for Navier-Stokes equations with open, traction, or free boundary conditions. Li Z; Xiao L; Cai Q; Zhao H; Luo R J Comput Phys; 2015 Aug; 297():182-193. PubMed ID: 27087702 [TBL] [Abstract][Full Text] [Related]
19. A multilevel Monte Carlo finite element method for the stochastic Cahn-Hilliard-Cook equation. Khodadadian A; Parvizi M; Abbaszadeh M; Dehghan M; Heitzinger C Comput Mech; 2019; 64(4):937-949. PubMed ID: 31929667 [TBL] [Abstract][Full Text] [Related]
20. ANALYSIS AND DESIGN OF JUMP COEFFICIENTS IN DISCRETE STOCHASTIC DIFFUSION MODELS. Meinecke L; Engblom S; Hellander A; Lötstedt P SIAM J Sci Comput; 2016; 38(1):A55-A83. PubMed ID: 28611531 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]