These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 30839728)

  • 1. A computational model for driver's cognitive state, visual perception and intermittent attention in a distracted car following task.
    Pekkanen J; Lappi O; Rinkkala P; Tuhkanen S; Frantsi R; Summala H
    R Soc Open Sci; 2018 Sep; 5(9):180194. PubMed ID: 30839728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Using naturalistic driving study data to investigate the impact of driver distraction on driver's brake reaction time in freeway rear-end events in car-following situation.
    Gao J; Davis GA
    J Safety Res; 2017 Dec; 63():195-204. PubMed ID: 29203019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fatal crash between a car operating with automated control systems and a tractor-semitrailer truck.
    Poland K; McKay MP; Bruce D; Becic E
    Traffic Inj Prev; 2018; 19(sup2):S153-S156. PubMed ID: 30841795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Resolution Neural Network for Driver Visual Attention Prediction.
    Kang B; Lee Y
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32260397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical information for car following: the driving by visual angle (DVA) model.
    Andersen GJ; Sauer CW
    Hum Factors; 2007 Oct; 49(5):878-96. PubMed ID: 17915604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applying the Accumulator model to predict driver's reaction time based on looming in approaching and braking conditions.
    Durrani U; Lee C
    J Safety Res; 2023 Sep; 86():298-310. PubMed ID: 37718057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Research on imaging method of driver's attention area based on deep neural network.
    Zhao S; Li Y; Ma J; Xing Z; Tang Z; Zhu S
    Sci Rep; 2022 Sep; 12(1):16427. PubMed ID: 36180777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mobile Phone Use in a Car-Following Situation: Impact on Time Headway and Effectiveness of Driver's Rear-End Risk Compensation Behavior via a Driving Simulator Study.
    Chen Y; Fu R; Xu Q; Yuan W
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32092914
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A rear-end collision risk assessment model based on drivers' collision avoidance process under influences of cell phone use and gender-A driving simulator based study.
    Li X; Yan X; Wu J; Radwan E; Zhang Y
    Accid Anal Prev; 2016 Dec; 97():1-18. PubMed ID: 27565040
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Driver's Visual Attention Prediction Using Optical Flow.
    Kang B; Lee Y
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34071901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Proactive Recognition System for Detecting Commercial Vehicle Driver's Distracted Behavior.
    Yan X; He J; Wu G; Zhang C; Wang C
    Sensors (Basel); 2022 Mar; 22(6):. PubMed ID: 35336546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of age, speed and duration of monotonous driving task in traffic on the driver's useful visual field.
    Rogé J; Pébayle T; Lambilliotte E; Spitzenstetter F; Giselbrecht D; Muzet A
    Vision Res; 2004 Oct; 44(23):2737-44. PubMed ID: 15358068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In a heart beat: Using driver's physiological changes to determine the quality of a takeover in highly automated vehicles.
    Alrefaie MT; Summerskill S; Jackon TW
    Accid Anal Prev; 2019 Oct; 131():180-190. PubMed ID: 31302486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Creating pedestrian crash scenarios in a driving simulator environment.
    Chrysler ST; Ahmad O; Schwarz CW
    Traffic Inj Prev; 2015; 16 Suppl 1():S12-7. PubMed ID: 26027964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inattention and Uncertainty in the Predictive Brain.
    Kujala T; Lappi O
    Front Neuroergon; 2021; 2():718699. PubMed ID: 38235221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Neuro-Vision Embedded Architecture for Safety Assessment in Perceptive Advanced Driver Assistance Systems: The Pedestrian Tracking System Use-Case.
    Rundo F; Conoci S; Spampinato C; Leotta R; Trenta F; Battiato S
    Front Neuroinform; 2021; 15():667008. PubMed ID: 34393746
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effects of brief visual interruption tasks on drivers' ability to resume their visual search for a pre-cued hazard.
    Borowsky A; Horrey WJ; Liang Y; Garabet A; Simmons L; Fisher DL
    Accid Anal Prev; 2016 Aug; 93():207-216. PubMed ID: 27209155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the relationship between occlusion times and in-car glance durations in simulated driving.
    Grahn H; Kujala T; Taipalus T; Lee J; Lee JD
    Accid Anal Prev; 2023 Mar; 182():106955. PubMed ID: 36630858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Driver's Visual Attention Characteristics and Their Emotional Influencing Mechanism under Different Cognitive Tasks.
    Liu Y; Wang X; Chen L; Liu S; Han J; Shi H; Zhong F
    Int J Environ Res Public Health; 2022 Apr; 19(9):. PubMed ID: 35564459
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.